Comptes Rendus
Exact analytic solutions for the damped Duffing nonlinear oscillator
[Les solutions analytiques exactes pour le amortissable non linéaire oscillateur de Duffing]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 311-316.

Nous montrons que l'oscillateur de Duffing amorti peut être réduit à une équation équivalente à la forme normale d'équation d'Abel de seconde espèce. Sur la base d'une méthode développée récemment pour construction des solutions analytiques exactes de ce type d'équations d'Abel, des solutions analytiques exactes sont obtenues pour l'oscillateur de Duffing amorti, satisfaisant aux conditions initiales conformes au problème physique sousjacent. Pour illustrer la généralité de la méthode, une application à l'oscillateur de van der Pol est brièvement discutée.

We prove that the second-order damped nonlinear Duffing oscillator is reduced to an equivalent equation of the normal Abel form of the second kind. Based on a recently developed mathematical methodology for the construction of exact analytic solutions of Abel's equation, exact analytic solutions are obtained for the nonlinear damped Duffing oscillator obeying the initial conditions adapted to the physical problem. To improve the general developed methodology an application concerning the nonlinear Van der Pol free oscillator is briefly discussed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2006.03.009
Keywords: Analytical mechanics, Damped Duffing nonlinear oscillator, Abel's equation
Mots-clés : Mécanique analytique, Non linéaire oscillateur de Duffing, Équation d'Abel

Dimitrios E. Panayotounakos 1 ; Efstathios E. Theotokoglou 1 ; Michalis P. Markakis 1

1 School of Applied Mathematical and Physical Sciences (SEMFE), National Technical University of Athens, NTUA, 5, Heroes of Polythechniou Avenue, Zographou, 157 73, Athens, Greece
@article{CRMECA_2006__334_5_311_0,
     author = {Dimitrios E. Panayotounakos and Efstathios E. Theotokoglou and Michalis P. Markakis},
     title = {Exact analytic solutions for the damped {Duffing} nonlinear oscillator},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {311--316},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crme.2006.03.009},
     language = {en},
}
TY  - JOUR
AU  - Dimitrios E. Panayotounakos
AU  - Efstathios E. Theotokoglou
AU  - Michalis P. Markakis
TI  - Exact analytic solutions for the damped Duffing nonlinear oscillator
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 311
EP  - 316
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2006.03.009
LA  - en
ID  - CRMECA_2006__334_5_311_0
ER  - 
%0 Journal Article
%A Dimitrios E. Panayotounakos
%A Efstathios E. Theotokoglou
%A Michalis P. Markakis
%T Exact analytic solutions for the damped Duffing nonlinear oscillator
%J Comptes Rendus. Mécanique
%D 2006
%P 311-316
%V 334
%N 5
%I Elsevier
%R 10.1016/j.crme.2006.03.009
%G en
%F CRMECA_2006__334_5_311_0
Dimitrios E. Panayotounakos; Efstathios E. Theotokoglou; Michalis P. Markakis. Exact analytic solutions for the damped Duffing nonlinear oscillator. Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 311-316. doi : 10.1016/j.crme.2006.03.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.03.009/

[1] K. Krylov; B. Bogolyubov Introduction to Nonlinear Mechanics, Princeton Univ. Press, Princeton, NJ, 1947

[2] A.H. Nayfeh; D.T. Mook Nonlinear Oscillations, Wiley Interscience, New York, 1979

[3] C.A. Ludeke; W.S. Wagner The generalized Duffing equation with large damping, Int. J. Non-Linear Mech., Volume 3 (1968), pp. 383-395

[4] K.S. Mendelson Perturbation theory for damped nonlinear oscillators, J. Math. Phys., Volume II (1970), pp. 3413-3415

[5] G. Salenger; A.F. Vakakis; O. Gendelman; L. Manevitch; I. Andrianov Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators, Nonlinear Dynamics, Volume 20 (1999), pp. 99-114

[6] D.E. Panayotounakos; N.D. Panayotounakou; A.F. Vakakis On the solution of the unforced damped Duffing oscillator with no linear stiffness term, Nonlinear Dynamics, Volume 28 (2002), pp. 1-16

[7] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, vol. I, B.G. Teubner, Stuttgard, 1976

[8] A.D. Polyanin; V.F. Zaitsev Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, New York, 1999

[9] D.E. Panayotounakos Exact analytic solutions of unsolvable classes of first and second-order nonlinear ODEs (Part I: Abel's equations), Appl. Math. Lett., Volume 18 (2005), pp. 155-162

[10] D.E. Panayotounakos; N.B. Sotiropoulos; A.B. Sotiropoulou; N.D. Panayotounakou Exact analytic solutions of nonlinear boundary value problems in fluid mechanics (Blasius equations), J. Math. Phys., Volume 46 (2005), p. 033101-1-033101-26

[11] H.T. Davis Introduction to Nonlinear Differential and Integral Equations, Dover Publ. Inc., New York, 1962

[12] D.E. Panayotounakos, G. Exadaktylos, A.F. Vakakis, in: Analytical Solution of the Nonlinear Duffing Oscillator, 6th Greek Conference on Mechanics, Thessaloniki, Greece, June, 2001

  • Metin Aktas; Bibekananda Nayak; Biswanath Rath Exact analytical investigation of Duffing oscillator vibration spectra under time-periodic oscillatory external force, International Journal of Modern Physics C, Volume 36 (2025) no. 04 | DOI:10.1142/s0129183124502140
  • Anna R. Ishchenko; Dmitry I. Sinelshchikov On an integrable family of oscillators with linear and quadratic damping, Chaos, Solitons Fractals, Volume 176 (2023), p. 114082 | DOI:10.1016/j.chaos.2023.114082
  • Arnab Banerjee; Kamal Krishna Bera Wave propagation in mass-in-mass Duffing type non-linear metamaterial implementing Jacobi’s elliptic balance method, International Journal of Non-Linear Mechanics, Volume 157 (2023), p. 104549 | DOI:10.1016/j.ijnonlinmec.2023.104549
  • Yusry O. El-Dib The frequency estimation for non-conservative nonlinear oscillation, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 101 (2021) no. 12, p. 14 (Id/No e202100187) | DOI:10.1002/zamm.202100187 | Zbl:7813228
  • E. E. Theotokoglou; D. E. Panayotounakos Nonlinear asymptotic analysis of a system of two free coupled oscillators with cubic nonlinearities, Applied Mathematical Modelling, Volume 43 (2017), pp. 509-520 | DOI:10.1016/j.apm.2016.11.014 | Zbl:1446.70008
  • Roberto Zivieri; Silvano Vergura; Mario Carpentieri Analytical and numerical solution to the nonlinear cubic Duffing equation: an application to electrical signal analysis of distribution lines, Applied Mathematical Modelling, Volume 40 (2016) no. 21-22, pp. 9152-9164 | DOI:10.1016/j.apm.2016.05.043 | Zbl:1480.94021
  • Efstathios E. Theotokoglou; Theodoros I. Zarmpoutis; Ioannis H. Stampouloglou Closed-form solutions of the Thomas-Fermi in heavy atoms and the Langmuir-blodgett in current flow ODEs in mathematical physics, Mathematical Problems in Engineering, Volume 2015 (2015), p. 8 (Id/No 721637) | DOI:10.1155/2015/721637 | Zbl:1394.34029
  • Mei-xiang Cai; Jian-ping Yang; Jin Deng Bifurcations and chaos in Duffing equation with damping and external excitations, Acta Mathematicae Applicatae Sinica. English Series, Volume 30 (2014) no. 2, pp. 483-504 | DOI:10.1007/s10255-014-0284-0 | Zbl:1301.34048
  • Lijun Yang; Zhihua Yang; Feng Zhou; Lihua Yang A novel envelope model based on convex constrained optimization, Digital Signal Processing, Volume 29 (2014), p. 138 | DOI:10.1016/j.dsp.2014.02.017
  • B. Cretin; D. Vernier, 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time forum (2009), p. 797 | DOI:10.1109/freq.2009.5168295

Cité par 10 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: