Comptes Rendus
Numerical approximation of a viscoelastic frictional contact problem
[Approximation numérique d'un problème viscoélastique de contact avec frottement]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 279-284.

Nous considérons un schéma totalement discrétisé pour un problème quasistatique de contact avec frottement entre un corps viscoélastique et un obstacle. Le contact est bilatéral, le frottement est modélisé à l'aide de la loi de Tresca et le comportement du matériau est décrit à l'aide d'une loi viscoélastique à mémoire longue. Nous présentons un résultat d'existence et d'unicité pour la solution discrète, suivi des résultats d'estimation de l'erreur. Nous présentons aussi des simulations numériques dans l'étude d'un exemple test en dimension deux.

We consider a fully discrete scheme for a quasistatic frictional contact problem between a viscoelastic body and an obstacle. The contact is bilateral, the friction is modeled with Tresca's law and the behavior of the material is described with a viscoelastic constitutive law with long memory. We state an existence and uniqueness result for the discrete solution, followed by error estimate results. Then, we present numerical simulations in the study of a two-dimensional test example.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2006.03.013
Keywords: Friction, Viscoelastic frictional contact, Fully discrete scheme, Finite element method, Error estimates, Duality-penalization algorithm, Numerical simulations
Mot clés : Frottement, Contact viscoélastique avec frottement, Schéma totalement discrétisé, Méthode des élements finis, Estimation de l'erreur, Algorithme de dualité-pénalisation, Simulations numériques

Ángel Rodríguez-Arós 1 ; Mircea Sofonea 2 ; Juan Viaño 1

1 Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, Avda. Lope Gómez de Marzoa S/N, Facultade de Matemáticas, 15782 Santiago de Compostela, Spain
2 Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52, avenue Paul-Alduy, 66860 Perpignan cedex, France
@article{CRMECA_2006__334_5_279_0,
     author = {\'Angel Rodr{\'\i}guez-Ar\'os and Mircea Sofonea and Juan Via\~no},
     title = {Numerical approximation of a viscoelastic frictional contact problem},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {279--284},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crme.2006.03.013},
     language = {en},
}
TY  - JOUR
AU  - Ángel Rodríguez-Arós
AU  - Mircea Sofonea
AU  - Juan Viaño
TI  - Numerical approximation of a viscoelastic frictional contact problem
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 279
EP  - 284
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2006.03.013
LA  - en
ID  - CRMECA_2006__334_5_279_0
ER  - 
%0 Journal Article
%A Ángel Rodríguez-Arós
%A Mircea Sofonea
%A Juan Viaño
%T Numerical approximation of a viscoelastic frictional contact problem
%J Comptes Rendus. Mécanique
%D 2006
%P 279-284
%V 334
%N 5
%I Elsevier
%R 10.1016/j.crme.2006.03.013
%G en
%F CRMECA_2006__334_5_279_0
Ángel Rodríguez-Arós; Mircea Sofonea; Juan Viaño. Numerical approximation of a viscoelastic frictional contact problem. Comptes Rendus. Mécanique, Volume 334 (2006) no. 5, pp. 279-284. doi : 10.1016/j.crme.2006.03.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.03.013/

[1] G. Duvaut; J.L. Lions Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976

[2] W. Han; M. Sofonea Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Stud. Adv. Math., vol. 30, Amer. Math. Soc., Intl. Press, Providence, RI, Somerville, MA, 2002

[3] I. Hlaváček; J. Haslinger; J. Necǎs; J. Lovíšek Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988

[4] Contact Mechanics (J.A.C. Martins; M.D.P. Monteiro Marques, eds.), Kluwer Academic Publishers, Dordrecht, 2002

[5] M. Sofonea; A. Rodríguez-Arós; J.M. Viaño A class of integro-differential variational inequalities with applications to viscoelastic contact, Math. Comput. Model., Volume 41 (2005), pp. 1355-1369

[6] J. Haslinger; R. Kučera; Z. Dostál An algorithm for the numerical realization of 3D contact problems with Coulomb friction, J. Comput. Appl. Math., Volume 164–165 (2004), pp. 387-408

[7] A.C. Pipkin Lectures in Viscoelasticity Theory, Appl. Math. Sci., vol. 7, George Allen & Unwin Ltd., Springer-Verlag, London, New York, 1972

[8] M. Shillor; M. Sofonea; J.J. Telega Models and Variational Analysis of Quasistatic Contact, Lecture Notes in Phys., vol. 655, Springer-Verlag, Berlin, Heidelberg, 2004

[9] A.D. Rodríguez-Arós; M. Sofonea; J.M. Viaño A class of evolutionary variational inequalities with Volterra-type integral term, Math. Models Methods Appl. Sci. (M3AS), Volume 14 (2004), pp. 555-577

[10] A. Rodríguez-Arós, J.M. Viaño, M. Sofonea, Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory, Numer. Math., in press

[11] A. Bermúdez; C. Moreno Duality methods for solving variational inequalities, Comput. Math. Appl., Volume 7 (1981), pp. 43-58

Cité par Sources :

Commentaires - Politique