[Réponse de structures périodiques à des charges mobiles]
Une méthode est proposée afin de calculer la réponse de structures périodiques soumises à des charges mobiles. Celle-ci est basée sur la décomposition de Floquet qui permet de restreindre l'analyse du système entier à une cellule de référence. La principale contribution de l'approche présentée ci-après est que la réponse est directement déduite à partir de la fonction de transfert dans le domaine espace-nombre d'onde calculée dans une cellule de référence non bornée. De plus, l'équivalence entre la solution obtenue et la réponse de structures invariantes calculée avec la transformée de Fourier est établie.
A method is proposed to calculate the response of periodic structures subjected to moving loads. It is based on the Floquet decomposition which allows the restriction of the analysis for the overall system to a generic cell. The main contribution of the approach presented hereafter is that the response is directly deduced from transfer functions in the space-wavenumber domain calculated in an unbounded generic cell. Moreover, the equivalence of this new solution with the response of invariant structures obtained using Fourier transforms is established.
Accepté le :
Publié le :
Mots-clés : Solides et structures, Structure périodique, Transformée de Floquet, Charge mobile
Hamid Chebli 1 ; Ramzi Othman 1 ; Didier Clouteau 1
@article{CRMECA_2006__334_6_347_0, author = {Hamid Chebli and Ramzi Othman and Didier Clouteau}, title = {Response of periodic structures due to moving loads}, journal = {Comptes Rendus. M\'ecanique}, pages = {347--352}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2006}, doi = {10.1016/j.crme.2006.04.001}, language = {en}, }
Hamid Chebli; Ramzi Othman; Didier Clouteau. Response of periodic structures due to moving loads. Comptes Rendus. Mécanique, Volume 334 (2006) no. 6, pp. 347-352. doi : 10.1016/j.crme.2006.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.04.001/
[1] Vibration of Solids and Structures under Moving Loads, Thomas Telford Ltd., London, 1999
[2] Sur les équations différentielles linéaires à coefficients périodiques, Ann. Ecole Normale, Volume 12 (1883)
[3] Analysis of the critical speeds of a moving load on an infinite periodically supported beam, J. Sound Vib., Volume 73 (1980) no. 4, pp. 606-610
[4] Parametric instability in the oscillations of a body moving uniformly in a periodically inhomogeneous elastic system, J. Appl. Mech. Tech. Phys., Volume 34 (1993) no. 2, pp. 266-271
[5] Periodic BEM and FEM–BEM coupling: applications to seismic behaviour of very long structures, Comp. Mech., Volume 25 (2000) no. 6, pp. 567-577
[6] Ground vibration from high-speed trains: prediction and countermeasure, J. Geotech. Geoenv. Eng., Volume 126 (2000) no. 6, pp. 531-537
[7] Three-dimensional periodic model for the simulation of vibrations induced by high speed trains, Ital. Geotech. J., Volume 38 (2004) no. 4, pp. 26-31
- Modelling and analysis of train-track-subgrade-soil dynamic interaction subjected to the interfacial damage of slab induced by uneven settlement, Applied Mathematical Modelling, Volume 134 (2024), p. 471 | DOI:10.1016/j.apm.2024.06.019
- The effect of foundation–soil–foundation interaction on the response of continuous, multi-span railway bridges, Engineering Structures, Volume 299 (2024), p. 117096 | DOI:10.1016/j.engstruct.2023.117096
- Surface wave mitigation by periodic wave barriers under a moving load: theoretical analysis, numerical simulation and experimental validation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 382 (2024) no. 2278 | DOI:10.1098/rsta.2024.0020
- On railway track receptance, Soil Dynamics and Earthquake Engineering, Volume 177 (2024), p. 108331 | DOI:10.1016/j.soildyn.2023.108331
- Prediction method and experimental verification of vibration response caused by underground high-speed railways, Journal of Low Frequency Noise, Vibration and Active Control, Volume 42 (2023) no. 1, p. 452 | DOI:10.1177/14613484221132117
- Periodic Structures as a Countermeasure of Traffic Vibration and Earthquake: A Review, Advanced Technologies for Humanity, Volume 110 (2022), p. 359 | DOI:10.1007/978-3-030-94188-8_34
- Finite element periodic catenary model to perform HIL pantograph tests considering non-linear dropper behaviour, Finite Elements in Analysis and Design, Volume 210 (2022), p. 103816 | DOI:10.1016/j.finel.2022.103816
- Beams on elastic foundations – A review of railway applications and solutions, Transportation Geotechnics, Volume 33 (2022), p. 100696 | DOI:10.1016/j.trgeo.2021.100696
- Vibration transfer from slab tracks on piled foundations, Transportation Geotechnics, Volume 36 (2022), p. 100803 | DOI:10.1016/j.trgeo.2022.100803
- Filtering property of periodic pile barriers under moving loads, Computers and Geotechnics, Volume 136 (2021), p. 104244 | DOI:10.1016/j.compgeo.2021.104244
- A new time-delayed periodic boundary condition for discrete element modelling of railway track under moving wheel loads, Granular Matter, Volume 23 (2021) no. 4 | DOI:10.1007/s10035-021-01123-4
- The nonlinear dynamical analysis of damaged concrete slab of high speed railway track using the revised Fourier pseudo-spectral method, Construction and Building Materials, Volume 244 (2020), p. 118336 | DOI:10.1016/j.conbuildmat.2020.118336
- Reduced modelling computation of layered soil's harmonic green functions, Finite Elements in Analysis and Design, Volume 177 (2020), p. 103419 | DOI:10.1016/j.finel.2020.103419
- Non-linear soil behaviour on high speed rail lines, Computers and Geotechnics, Volume 112 (2019), p. 302 | DOI:10.1016/j.compgeo.2019.03.028
- An implicit periodic nonlinear model for evaluating dynamic response of damaged slab track involving material nonlinearity of damage, Construction and Building Materials, Volume 197 (2019), p. 559 | DOI:10.1016/j.conbuildmat.2018.11.198
- A dynamic model for the response of a periodic viaduct under a moving mass, European Journal of Mechanics - A/Solids, Volume 73 (2019), p. 394 | DOI:10.1016/j.euromechsol.2018.10.002
- On the dynamics of periodically restrained flexural structures under moving loads, International Journal of Solids and Structures, Volume 180-181 (2019), p. 62 | DOI:10.1016/j.ijsolstr.2019.07.013
- An explicit periodic nonlinear model for evaluating dynamic response of damaged slab track involving material nonlinearity of damage in high speed railway, Construction and Building Materials, Volume 168 (2018), p. 606 | DOI:10.1016/j.conbuildmat.2018.02.147
- An efficient method for the dynamic responses of periodic structures based on the physical features of the structure and group theory, International Journal of Mechanical Sciences, Volume 141 (2018), p. 461 | DOI:10.1016/j.ijmecsci.2018.04.028
- A Prediction Method of Historical Timber Buildings’ Vibrations Induced by Traffic Loads and Its Validation, Shock and Vibration, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/1451483
- Resonance and cancelation phenomena in a periodic viaduct under a series of equidistant moving loadings, Archive of Applied Mechanics, Volume 86 (2016) no. 8, p. 1431 | DOI:10.1007/s00419-016-1127-7
- Resonance and cancellation phenomena caused by equidistant moving loadings in a periodic structure — A pile-supported periodic viaduct, European Journal of Mechanics - A/Solids, Volume 59 (2016), p. 114 | DOI:10.1016/j.euromechsol.2016.03.010
- Sandwich structures with periodic assemblies on elastic foundation under moving loads, Journal of Vibration and Control, Volume 22 (2016) no. 10, p. 2519 | DOI:10.1177/1077546314548470
- Dynamic response of a periodic viaduct to a moving loading with consideration of the pile–soil–structure interaction, Acta Mechanica, Volume 226 (2015) no. 6, p. 2013 | DOI:10.1007/s00707-014-1295-x
- Dynamic response of a periodic viaduct to a moving point loading, Archive of Applied Mechanics, Volume 85 (2015) no. 1, p. 149 | DOI:10.1007/s00419-014-0907-1
- Dynamics of structures coupled with elastic media—A review of numerical models and methods, Journal of Sound and Vibration, Volume 332 (2013) no. 10, p. 2415 | DOI:10.1016/j.jsv.2012.10.011
- Prediction of vibrations from underground trains on Beijing metro line 15, Journal of Central South University of Technology, Volume 17 (2010) no. 5, p. 1109 | DOI:10.1007/s11771-010-0604-3
- Modelling of continuous and discontinuous floating slab tracks in a tunnel using a periodic approach, Journal of Sound and Vibration, Volume 329 (2010) no. 8, p. 1101 | DOI:10.1016/j.jsv.2009.10.037
- Prediction of vibrations induced by trains on line 8 of Beijing metro, Journal of Zhejiang University SCIENCE A, Volume 11 (2010) no. 4, p. 280 | DOI:10.1631/jzus.a0900304
- Numerical modelling of vibrations from a Thalys high speed train in the Groene Hart tunnel, Soil Dynamics and Earthquake Engineering, Volume 30 (2010) no. 3, p. 82 | DOI:10.1016/j.soildyn.2009.09.004
- Ground-borne vibration due to static and dynamic axle loads of InterCity and high-speed trains, Journal of Sound and Vibration, Volume 319 (2009) no. 3-5, p. 1036 | DOI:10.1016/j.jsv.2008.07.003
- Experimental validation of a numerical model for subway induced vibrations, Journal of Sound and Vibration, Volume 321 (2009) no. 3-5, p. 786 | DOI:10.1016/j.jsv.2008.10.014
- Influence of tunnel and soil parameters on vibrations from underground railways, Journal of Sound and Vibration, Volume 327 (2009) no. 1-2, p. 70 | DOI:10.1016/j.jsv.2009.05.029
- 3D periodic BE–FE model for various transportation structures interacting with soil, Computers and Geotechnics, Volume 35 (2008) no. 1, p. 22 | DOI:10.1016/j.compgeo.2007.03.008
- Prediction of vibrations induced by underground railway traffic in Beijing, Journal of Sound and Vibration, Volume 310 (2008) no. 3, p. 608 | DOI:10.1016/j.jsv.2007.07.016
- Experimental Validation of a Numerical Model for Subway Induced Vibrations, Noise and Vibration Mitigation for Rail Transportation Systems, Volume 99 (2008), p. 108 | DOI:10.1007/978-3-540-74893-9_15
- Dynamic response of high-speed ballasted railway tracks: 3D periodic model and in situ measurements, Soil Dynamics and Earthquake Engineering, Volume 28 (2008) no. 2, p. 118 | DOI:10.1016/j.soildyn.2007.05.007
Cité par 37 documents. Sources : Crossref
Commentaires - Politique