[Sur la modélisation de l'érosion interne]
Un phénomène dénommé « renard » survient souvent sur les ouvrages hydrauliques. Il est lié à la formation et au développement d'un tunnel continu entre l'amont et l'aval. L'essai d'érosion au trou est très utilisé pour quantifier la cinétique d'érosion par renard. Toutefois, peu de travaux ont porté sur la modélisation de cette expérimentation. A partir des équations d'écoulement diphasique avec diffusion, et des équations de saut avec érosion, nous développons un modèle pour l'érosion par renard. Nous proposons un temps caractéristique de ce mécanisme d'érosion. Nous validons notre approche par comparaison avec des résultats expérimentaux.
A phenomenon called ‘piping’ often occurs in hydraulics works, involving the formation and evolution of a continuous tunnel between the upstream and the downstream sides. The hole erosion test is commonly used to quantify the rate of piping erosion. However, few attempts have been made to model these tests. From the equations for diphasic flow with diffusion, and the equations of jump with erosion, a piping model is developed. A characteristic time of internal erosion process is proposed. Comparison with experimental data validates our results.
Mots-clés : Sols, Écoulements diphasiques, Erosion interne, Renard
Stéphane Bonelli 1 ; Olivier Brivois 1, 2 ; Roland Borghi 2, 3 ; Nadia Benahmed 1
@article{CRMECA_2006__334_8-9_555_0, author = {St\'ephane Bonelli and Olivier Brivois and Roland Borghi and Nadia Benahmed}, title = {On the modelling of piping erosion}, journal = {Comptes Rendus. M\'ecanique}, pages = {555--559}, publisher = {Elsevier}, volume = {334}, number = {8-9}, year = {2006}, doi = {10.1016/j.crme.2006.07.003}, language = {en}, }
Stéphane Bonelli; Olivier Brivois; Roland Borghi; Nadia Benahmed. On the modelling of piping erosion. Comptes Rendus. Mécanique, Observation, analysis and modelling in complex fluid media, Volume 334 (2006) no. 8-9, pp. 555-559. doi : 10.1016/j.crme.2006.07.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.07.003/
[1] R. Fell, C.F. Wan, Investigation of internal erosion and piping of soils in embankment dams by the slot erosion test and the hole erosion test, UNICIV Report No R-412, The University of New South Wales Sydney, ISSN 0077 880X, 2002
[2] Investigation of rate of erosion of soils in embankment dams, Journal of Geotechnical and Geoenvironmental Engineering, Volume 30 (2004) no. 4, pp. 373-380
[3] Laboratory tests on the rate of piping erosion of soils in embankment dams, Journal of Geotechnical Testing Journal, Volume 27 (2004) no. 3
[4] Dynamics of Multiphase Media, Book News, Inc., Portland, 1990
[5] O. Brivois, Contribution à la modélisation de l'érosion de fortes pentes par un écoulement turbulent diphasique, Thèse Université Aix-Marseille II, 2005
[6] Boundary Layer Theory, McGraw–Hill, New York, 1987
[7] Erosion and Sedimentation, Cambridge Univ. Press, Cambridge, 1995
- The influence of weathering on piping erosion processes on large dimension pipes, Advanced Tools for Studying Soil Erosion Processes (2024), p. 337 | DOI:10.1016/b978-0-443-22262-7.00033-3
- Stability of sandy soils against internal erosion under cyclic loading and quantitatively examination of the composition and origin of eroded particles, Canadian Geotechnical Journal, Volume 61 (2024) no. 4, p. 732 | DOI:10.1139/cgj-2023-0325
- Mathematical modeling of deposition and erosion in porous media with branching channels, Physical Review Fluids, Volume 9 (2024) no. 11 | DOI:10.1103/physrevfluids.9.114301
- Simplified mathematical model for erosion and deposition in a porous medium, Physical Review Fluids, Volume 9 (2024) no. 12 | DOI:10.1103/physrevfluids.9.124306
- Mathematical modeling of erosion and deposition in porous media, Physical Review Fluids, Volume 9 (2024) no. 2 | DOI:10.1103/physrevfluids.9.024301
- Experimental investigation of collapsible soils under oedometric loading: effect of internal erosion, South Florida Journal of Development, Volume 5 (2024) no. 9, p. e4341 | DOI:10.46932/sfjdv5n9-012
- Development of a simplified theoretical model to determine erodibility of compacted soil in hole erosion test based on fluid energy transformation, Acta Geotechnica, Volume 18 (2023) no. 10, p. 5441 | DOI:10.1007/s11440-023-01877-6
- Application of micro-computed X-ray tomography for improving the hole erosion test analysis on high plastic clay, Acta Geotechnica, Volume 18 (2023) no. 2, p. 865 | DOI:10.1007/s11440-022-01606-5
- Erosion of soil around damaged buried water pipes—a critical review, Arabian Journal of Geosciences, Volume 16 (2023) no. 5 | DOI:10.1007/s12517-023-11391-4
- A new and simple model for predicting soil erosion based on hole erosion tests, Acta Geophysica, Volume 71 (2022) no. 2, p. 823 | DOI:10.1007/s11600-022-00904-6
- A coupled hydro-mechanical model for subsurface erosion with analyses of soil piping and void formation, Acta Geotechnica, Volume 17 (2022) no. 11, p. 4769 | DOI:10.1007/s11440-022-01479-8
- Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region, Geocarto International, Volume 37 (2022) no. 16, p. 4628 | DOI:10.1080/10106049.2021.1892212
- Modeling dam deformation in the early stage of internal seepage erosion – Application to the Teton Dam, Idaho, before the 1976 incident, Journal of Hydrology, Volume 605 (2022), p. 127378 | DOI:10.1016/j.jhydrol.2021.127378
- Permeability and Disintegration Characteristics of Composite Improved Phyllite Soil by Red Clay and Cement, Minerals, Volume 13 (2022) no. 1, p. 32 | DOI:10.3390/min13010032
- Laboratory investigation of erosion behavior at the soil–structure interface affected by various structural factors, Natural Hazards, Volume 111 (2022) no. 1, p. 1065 | DOI:10.1007/s11069-021-05070-4
- Evaluation of erosion characteristics of soils using the pinhole test, International Journal of Geo-Engineering, Volume 12 (2021) no. 1 | DOI:10.1186/s40703-021-00145-4
- Flow through time–evolving porous media: Swelling and erosion, Journal of Computational Science, Volume 53 (2021), p. 101360 | DOI:10.1016/j.jocs.2021.101360
- Choice of fiber-reinforced base material to reduce internal erosion mass transport, Arabian Journal of Geosciences, Volume 13 (2020) no. 5 | DOI:10.1007/s12517-020-5225-z
- Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data, Land, Volume 9 (2020) no. 10, p. 346 | DOI:10.3390/land9100346
- Meshless Modeling of Flow Dispersion and Progressive Piping in Poroelastic Levees, Fluids, Volume 4 (2019) no. 3, p. 120 | DOI:10.3390/fluids4030120
- Experimental Tests of Soil Reinforcement Against Erosion and Liquefaction by Microbially Induced Carbonate Precipitation, Internal Erosion in Earthdams, Dikes and Levees, Volume 17 (2019), p. 16 | DOI:10.1007/978-3-319-99423-9_2
- A finite element method for localized erosion in porous media with applications to backward piping in levees, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 1, p. 293 | DOI:10.1002/nag.2864
- An Experimental Investigation of Piping Effects on the Mechanical Properties of Toyoura Sand, KSCE Journal of Civil Engineering, Volume 22 (2018) no. 8, p. 2810 | DOI:10.1007/s12205-017-0314-6
- The Hole Erosion Test: A Comparison of Interpretation Methods, Geotechnical Testing Journal, Volume 40 (2017) no. 3, p. 494 | DOI:10.1520/gtj20160069
- Effects of soil physico-chemical properties on stream bank erosion induced by seepage in northeastern Iran, Hydrological Sciences Journal, Volume 62 (2017) no. 16, p. 2597 | DOI:10.1080/02626667.2017.1403030
- Channelization in porous media driven by erosion and deposition, Physical Review E, Volume 95 (2017) no. 1 | DOI:10.1103/physreve.95.013110
- Modelling Internal Erosion with the Material Point Method, Procedia Engineering, Volume 175 (2017), p. 365 | DOI:10.1016/j.proeng.2017.01.048
- Effects of Particle Size Non-Uniformity on Transport and Retention in Saturated Porous Media, Transport in Porous Media, Volume 118 (2017) no. 1, p. 85 | DOI:10.1007/s11242-017-0848-6
- References, Dam Failure Mechanisms and Risk Assessment (2016), p. 452 | DOI:10.1002/9781118558522.refs
- , Scour and Erosion (2016), p. 1099 | DOI:10.1201/9781315375045-140
- Numerical modelling of concentrated leak erosion during Hole Erosion Tests, Acta Geotechnica, Volume 10 (2015) no. 3, p. 319 | DOI:10.1007/s11440-014-0349-5
- 2D DIRECT NUMERICAL SIMULATION OF HOLE EROSION TESTS BY PARTICLE-FLUID COUPLED MODEL, Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), Volume 71 (2015) no. 2, p. I_567 | DOI:10.2208/jscejam.71.i_567
- Micro-mechanical analysis on the onset of erosion in granular materials, Philosophical Magazine, Volume 95 (2015) no. 28-30, p. 3146 | DOI:10.1080/14786435.2015.1049237
- Laboratory soil piping and internal erosion experiments: evaluation of a soil piping model for low‐compacted soils, Earth Surface Processes and Landforms, Volume 39 (2014) no. 9, p. 1137 | DOI:10.1002/esp.3508
- Simulation of pipe progression in a levee foundation with coupled seepage and pipe flow domains, Soils and Foundations, Volume 54 (2014) no. 5, p. 974 | DOI:10.1016/j.sandf.2014.09.003
- Internal Erosion of Earth Structures as a Coupled Hydromechanical Process, Applied Mechanics and Materials, Volume 330 (2013), p. 1084 | DOI:10.4028/www.scientific.net/amm.330.1084
- Land Subsidence, Encyclopedia of Natural Hazards (2013), p. 583 | DOI:10.1007/978-1-4020-4399-4_208
- A Thermodynamics-Based Model on the Internal Erosion of Earth Structures, Geotechnical and Geological Engineering, Volume 31 (2013) no. 2, p. 479 | DOI:10.1007/s10706-012-9600-8
- Improvement of Hole Erosion Test and Results on Reference Soils, Journal of Geotechnical and Geoenvironmental Engineering, Volume 139 (2013) no. 2, p. 330 | DOI:10.1061/(asce)gt.1943-5606.0000747
- Land subsidence caused by internal soil erosion owing to pumping confined aquifer groundwater during the deep foundation construction in Shanghai, Natural Hazards, Volume 69 (2013) no. 1, p. 473 | DOI:10.1007/s11069-013-0718-7
- Suspended Particles Transport and Deposition in Saturated Granular Porous Medium: Particle Size Effects, Transport in Porous Media, Volume 100 (2013) no. 3, p. 377 | DOI:10.1007/s11242-013-0220-4
- Concentrated Leak Erosion, Erosion of Geomaterials (2012), p. 155 | DOI:10.1002/9781118561737.ch5
- Modeling of Interfacial Erosion, Erosion of Geomaterials (2012), p. 187 | DOI:10.1002/9781118561737.ch6
- Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests, European Journal of Environmental and Civil Engineering, Volume 16 (2012) no. 1, p. 43 | DOI:10.1080/19648189.2012.667667
- Modeling the fluid/soil interface erosion in the Hole Erosion Test, MATEC Web of Conferences, Volume 1 (2012), p. 00003 | DOI:10.1051/matecconf/20120100003
- Reliability of flood embankments: a new methodology, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, Volume 165 (2012) no. 3, p. 143 | DOI:10.1680/geng.11.00039
- , SEG Technical Program Expanded Abstracts 2012 (2012), p. 1 | DOI:10.1190/segam2012-1309.1
- Numerical modeling of erosion using an improvement of the extended finite element method, European Journal of Environmental and Civil Engineering, Volume 15 (2011) no. 8, p. 1187 | DOI:10.1080/19648189.2011.9714848
- Micromechanical modeling of internal erosion, European Journal of Environmental and Civil Engineering, Volume 15 (2011) no. 8, p. 1207 | DOI:10.1080/19648189.2011.9714849
- Solid Particles Transport in Porous Media: Experimentation and Modelling, Water Security in the Mediterranean Region (2011), p. 97 | DOI:10.1007/978-94-007-1623-0_8
- Effect of Wall Roughness and Concentration of Clay on Erosion in the Hole Erosion Test, American Journal of Engineering and Applied Sciences, Volume 3 (2010) no. 4, p. 734 | DOI:10.3844/ajeassp.2010.734.739
- A Simplified Analytical Modeling of the Hole Erosion Test, American Journal of Engineering and Applied Sciences, Volume 3 (2010) no. 4, p. 765 | DOI:10.3844/ajeassp.2010.765.768
- Modeling, with a unified level-set representation, of the expansion of a hollow in the ground under different physical phenomena, Computational Mechanics, Volume 46 (2010) no. 2, p. 315 | DOI:10.1007/s00466-009-0443-y
- Contact Erosion at the Interface between Granular Coarse Soil and Various Base Soils under Tangential Flow Condition, Journal of Geotechnical and Geoenvironmental Engineering, Volume 136 (2010) no. 5, p. 741 | DOI:10.1061/(asce)gt.1943-5606.0000268
- , Scour and Erosion (2010), p. 152 | DOI:10.1061/41147(392)14
- , Scour and Erosion (2010), p. 387 | DOI:10.1061/41147(392)37
- , Scour and Erosion (2010), p. 397 | DOI:10.1061/41147(392)38
- Mechanisms of ephemeral gully erosion caused by constant flow through a continuous soil‐pipe, Earth Surface Processes and Landforms, Volume 34 (2009) no. 14, p. 1858 | DOI:10.1002/esp.1869
- Discussion: A methodology for regional-scale flood risk assessment, Proceedings of the Institution of Civil Engineers - Water Management, Volume 162 (2009) no. 5, p. 347 | DOI:10.1680/wama.2009.162.5.347
- Influence of Internal Structure and Medium Length on Transport and Deposition of Suspended Particles: A Laboratory Study, Transport in Porous Media, Volume 76 (2009) no. 2, p. 289 | DOI:10.1007/s11242-008-9247-3
- One-dimensional modeling of piping flow erosion, Comptes Rendus. Mécanique, Volume 336 (2008) no. 9, p. 731 | DOI:10.1016/j.crme.2008.06.007
Cité par 61 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier