[Recherche de forme des structures de tenségrité complexes : application à la modélisation du cytosquelette cellulaire]
La capacité à modéliser de façon la plus réaliste possible le comportement mécanique du cytosquelette des cellules constitue un point essentiel dans la compréhension de nombreux mécanismes biologiques. Les systèmes de tenségrité ont à cet égard déjà démontré leur pertinence. Néanmoins, les structures considérées à ce jour reposent uniquement sur des modèles avec une géométrie et une topologie simplifiées au regard de la complexité réelle de l'architecture des cytosquelettes. Ces travaux ont ainsi pour objectif de proposer une méthode de recherche de forme permettant de générer des formes de tenségrité non régulières plus riches et complexes. Le procédé est fondé sur la méthode de relaxation dynamique. Les modifications apportées offrent la possibilité de contrôler les morphologies ainsi calculées pour se rapprocher de configurations expérimentalement observées. Plusieurs applications montrent la mise en œuvre du processus et les résultats obtenus s'agissant de différentes typologies de cellules.
The ability to model the mechanical behaviour of the cell cytoskeleton as realistically as possible is a key point in understanding numerous biological mechanisms. Tensegrity systems have already demonstrated their pertinence for this purpose. However, the structures considered until now are based only on models with simplified geometry and topology compared to the true complexity of cytoskeleton architecture. The aim of this Note is to propose a form-finding method for generating nonregular tensegrity shapes of higher diversity and complexity. The process relies on the use of the dynamic relaxation method. Further improvements have made it possible to control the computed morphologies and to modify them to approach experimentally observed configurations. Various examples illustrate the use of the method and the results obtained for different cell typologies.
Accepté le :
Publié le :
Mots-clés : Biomécanique, Tenségrité, Forme non régulière, Cytosquelette
Haïmad Baudriller 1 ; Bernard Maurin 1 ; Patrick Cañadas 1 ; Philippe Montcourrier 2 ; Andrea Parmeggiani 2 ; Nadir Bettache 2
@article{CRMECA_2006__334_11_662_0, author = {Ha{\"\i}mad Baudriller and Bernard Maurin and Patrick Ca\~nadas and Philippe Montcourrier and Andrea Parmeggiani and Nadir Bettache}, title = {Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling}, journal = {Comptes Rendus. M\'ecanique}, pages = {662--668}, publisher = {Elsevier}, volume = {334}, number = {11}, year = {2006}, doi = {10.1016/j.crme.2006.08.004}, language = {en}, }
TY - JOUR AU - Haïmad Baudriller AU - Bernard Maurin AU - Patrick Cañadas AU - Philippe Montcourrier AU - Andrea Parmeggiani AU - Nadir Bettache TI - Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling JO - Comptes Rendus. Mécanique PY - 2006 SP - 662 EP - 668 VL - 334 IS - 11 PB - Elsevier DO - 10.1016/j.crme.2006.08.004 LA - en ID - CRMECA_2006__334_11_662_0 ER -
%0 Journal Article %A Haïmad Baudriller %A Bernard Maurin %A Patrick Cañadas %A Philippe Montcourrier %A Andrea Parmeggiani %A Nadir Bettache %T Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling %J Comptes Rendus. Mécanique %D 2006 %P 662-668 %V 334 %N 11 %I Elsevier %R 10.1016/j.crme.2006.08.004 %G en %F CRMECA_2006__334_11_662_0
Haïmad Baudriller; Bernard Maurin; Patrick Cañadas; Philippe Montcourrier; Andrea Parmeggiani; Nadir Bettache. Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling. Comptes Rendus. Mécanique, Volume 334 (2006) no. 11, pp. 662-668. doi : 10.1016/j.crme.2006.08.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.08.004/
[1] Tensegrity I. Cell structure and hierarchical systems biology, J. Cell Sci., Volume 116 (2003), pp. 1157-1173
[2] Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane, Gene Expression During Normal and Malignant Differentiation, Academic Press, San Diego, CA, 1985, pp. 13-32
[3] Cell pre-stress II. Contribution of microtubules, Am. J. Cell Physiol., Volume 282 (2002), p. C617-C624
[4] A finite element model of cell deformation during magnetic bead twisting, J. Appl. Physiol., Volume 93 (2002) no. 4, pp. 1429-1436
[5] Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton, Biophys. J., Volume 71 (1996) no. 1, pp. 109-118
[6] Scaling the microrheology of living cells, Phys. Rev. Lett., Volume 87 (2001), p. 148102
[7] A microstructural approach to cytoskeletal mechanics based on tensegrity, J. Theoret. Biol., Volume 181 (1996) no. 2, pp. 125-136
[8] Stiffening response of a cellular tensegrity model, J. Theoret. Biol., Volume 196 (1999) no. 3, pp. 309-325
[9] Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers, J. Biomech. Eng., Volume 124 (2002) no. 4, pp. 408-421
[10] Toward a generalized tensegrity model describing the mechanical behavior of the cytoskeleton structure, Comput. Methods Biomech. Biomed. Eng., Volume 1 (2003), pp. 1-8
[11] Tensegrity: Structural Systems for the Future, Hermes Penton Sci., UK, 2003
[12] Equilibrium conditions of a tensegrity structure, Int. J. Solids Structures, Volume 40 (2003) no. 23, pp. 6347-6367
[13] Multiparametered form-finding method: application to tensegrity systems, Int. J. Space Structures, Volume 14 (1999) no. 2, pp. 147-154
[14] Form-finding and analysis of tension structures by dynamic relaxation, Int. J. Space Structures, Volume 14 (1999) no. 2
- A FEM modal and harmonic approach to the natural frequencies of cancer and healthy cells, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 47 (2025) no. 3 | DOI:10.1007/s40430-025-05472-6
- An efficient Newton-Raphson based form-finding method for tensegrity structures with given strut forces and cable force density, Latin American Journal of Solids and Structures, Volume 21 (2024) no. 12 | DOI:10.1590/1679-78258162
- Logical Foundations for Reasoning in Cyber - Physical Systems, Oriental journal of computer science and technology, Volume 16 (2023) no. 01, p. 01 | DOI:10.13005/ojcst16.01.01
- Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications, International Journal for Numerical Methods in Biomedical Engineering, Volume 37 (2021) no. 12 | DOI:10.1002/cnm.3520
- Nonlocal Elasticity Theory for the Mechanical Behavior of Protein Microtubules, Physical Mesomechanics, Volume 24 (2021) no. 3, p. 319 | DOI:10.1134/s1029959921030103
- Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties, ACS Biomaterials Science Engineering, Volume 4 (2018) no. 8, p. 2794 | DOI:10.1021/acsbiomaterials.8b00640
- Form-finding of tensegrity structures based on the Levenberg–Marquardt method, Computers Structures, Volume 192 (2017), p. 171 | DOI:10.1016/j.compstruc.2017.07.005
- Examining the temporo-mandibular joint from a biotensegrity perspective: A change in thinking, Journal of Applied Biomedicine, Volume 15 (2017) no. 1, p. 55 | DOI:10.1016/j.jab.2016.10.002
- Modeling and simulation of biopolymer networks: Classification of the cytoskeleton models according to multiple scales, Korean Journal of Chemical Engineering, Volume 32 (2015) no. 7, p. 1207 | DOI:10.1007/s11814-015-0071-5
- Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells, Biomechanics and Modeling in Mechanobiology, Volume 13 (2014) no. 5, p. 929 | DOI:10.1007/s10237-014-0558-8
- Computational modeling of cell mechanics, Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System (2014), p. 93 | DOI:10.1533/9780857096739.2.93
- Stiffness matrix based form-finding method of tensegrity structures, Engineering Structures, Volume 58 (2014), p. 36 | DOI:10.1016/j.engstruct.2013.10.014
- DYNAMIC PROPAGATION OF SNAP-THROUGH BUCKLING IN TENSEGRITY STRUCTURES, International Journal of Structural Stability and Dynamics, Volume 14 (2014) no. 01, p. 1350049 | DOI:10.1142/s0219455413500491
- Stiffness versus prestress relationship at subcellular length scale, Journal of Biomechanics, Volume 47 (2014) no. 12, p. 3222 | DOI:10.1016/j.jbiomech.2014.08.004
- Review on Cell Mechanics: Experimental and Modeling Approaches, Applied Mechanics Reviews, Volume 65 (2013) no. 6 | DOI:10.1115/1.4025355
- Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures, Biomechanics and Modeling in Mechanobiology, Volume 12 (2013) no. 1, p. 167 | DOI:10.1007/s10237-012-0390-y
- Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach, Optimization and Engineering, Volume 14 (2013) no. 1, p. 61 | DOI:10.1007/s11081-011-9172-0
- Form-Finding Model Shows How Cytoskeleton Network Stiffness Is Realized, PLoS ONE, Volume 8 (2013) no. 10, p. e77417 | DOI:10.1371/journal.pone.0077417
- Exploring new tensegrity structures via mixed integer programming, Structural and Multidisciplinary Optimization, Volume 48 (2013) no. 1, p. 95 | DOI:10.1007/s00158-012-0881-6
- Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: A review, Medical Engineering Physics, Volume 34 (2012) no. 10, p. 1375 | DOI:10.1016/j.medengphy.2012.08.007
- Determination of a unique configuration of free-form tensegrity structures, Acta Mechanica, Volume 220 (2011) no. 1-4, p. 331 | DOI:10.1007/s00707-011-0479-x
- Study and construction of a pentagon-based tensegrity ring, European Journal of Environmental and Civil Engineering, Volume 15 (2011) no. 6, p. 849 | DOI:10.1080/19648189.2011.9695277
- On the Significance of Microtubule Flexural Behavior in Cytoskeletal Mechanics, PLoS ONE, Volume 6 (2011) no. 10, p. e25627 | DOI:10.1371/journal.pone.0025627
- Topology design of tensegrity structures via mixed integer programming, International Journal of Solids and Structures, Volume 47 (2010) no. 5, p. 571 | DOI:10.1016/j.ijsolstr.2009.10.020
- Multilevel Experimental and Modelling Techniques for Bioartificial Scaffolds and Matrices, Scanning Probe Microscopy in Nanoscience and Nanotechnology (2010), p. 425 | DOI:10.1007/978-3-642-03535-7_13
- Tensegrity Concept – From Natural Systems to Robots, Proceedings of EUCOMES 08 (2008), p. 549 | DOI:10.1007/978-1-4020-8915-2_66
Cité par 26 documents. Sources : Crossref
Commentaires - Politique