Comptes Rendus
Calculus of Variations
An elementary exclusion principle for Michell trusses
[Un principle elémentaire dʼexclusion pour les treillis de Michell]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 991-995.

Nous étendons le principe dʼexclusion des treillis de Michell énoncé dans Figueraoa et al. (2012) [2], à des structures obtenues par supperposition dʼun nombre dénombrable de barres. De plus, notre principle dʼexclusion sʼapplique en tout point de la structure à analyser.

The exclusion optimality principle for Michell trusses established in Figueraoa et al. (2012) [2] is extended to frames which consist of countably many bars or rods. Furthermore, our extended exclusion principle can be applied to any point of the support of the frame under analysis.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.10.030

Ross Granowski 1

1 School of Mathematics, Georgia Institute of Technology, 686, Cherry Street, Atlanta, GA 30332-0160, USA
@article{CRMATH_2012__350_21-22_991_0,
     author = {Ross Granowski},
     title = {An elementary exclusion principle for {Michell} trusses},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {991--995},
     publisher = {Elsevier},
     volume = {350},
     number = {21-22},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.030},
     language = {en},
}
TY  - JOUR
AU  - Ross Granowski
TI  - An elementary exclusion principle for Michell trusses
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 991
EP  - 995
VL  - 350
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.030
LA  - en
ID  - CRMATH_2012__350_21-22_991_0
ER  - 
%0 Journal Article
%A Ross Granowski
%T An elementary exclusion principle for Michell trusses
%J Comptes Rendus. Mathématique
%D 2012
%P 991-995
%V 350
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2012.10.030
%G en
%F CRMATH_2012__350_21-22_991_0
Ross Granowski. An elementary exclusion principle for Michell trusses. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 991-995. doi : 10.1016/j.crma.2012.10.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.030/

[1] G. Bouchitté; W. Gangbo; P. Seppecher Michell trusses and lines of principal action, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. 9, pp. 1571-1603

[2] E. Figueraoa; A. Hill; D. Lusco; R. Ryham Cutting corners in Michell trusses, Portugalie Mathematica, Volume 69 (2012) no. 2, pp. 95-112

[3] W. Gangbo Discrete decomposition of discrete forces, 2011 www.math.gatech.edu/~gangbo/ (unpublished lecture notes, cf.)

[4] A.G. Michell The limits of economy of material in framed-structures, Philosophical Magazine Ser. 6, Volume 8 (1904), pp. 589-597

[5] R. Skelton; M. de Oliveira Optimal tensegrity structures in bending: The discrete Michell truss, Journal of Franklin Institute, Volume 347 (2010), pp. 257-283

Cité par Sources :

Commentaires - Politique