[Un principle elémentaire dʼexclusion pour les treillis de Michell]
Nous étendons le principe dʼexclusion des treillis de Michell énoncé dans Figueraoa et al. (2012) [2], à des structures obtenues par supperposition dʼun nombre dénombrable de barres. De plus, notre principle dʼexclusion sʼapplique en tout point de la structure à analyser.
The exclusion optimality principle for Michell trusses established in Figueraoa et al. (2012) [2] is extended to frames which consist of countably many bars or rods. Furthermore, our extended exclusion principle can be applied to any point of the support of the frame under analysis.
Accepté le :
Publié le :
Ross Granowski 1
@article{CRMATH_2012__350_21-22_991_0, author = {Ross Granowski}, title = {An elementary exclusion principle for {Michell} trusses}, journal = {Comptes Rendus. Math\'ematique}, pages = {991--995}, publisher = {Elsevier}, volume = {350}, number = {21-22}, year = {2012}, doi = {10.1016/j.crma.2012.10.030}, language = {en}, }
Ross Granowski. An elementary exclusion principle for Michell trusses. Comptes Rendus. Mathématique, Volume 350 (2012) no. 21-22, pp. 991-995. doi : 10.1016/j.crma.2012.10.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.030/
[1] Michell trusses and lines of principal action, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. 9, pp. 1571-1603
[2] Cutting corners in Michell trusses, Portugalie Mathematica, Volume 69 (2012) no. 2, pp. 95-112
[3] Discrete decomposition of discrete forces, 2011 www.math.gatech.edu/~gangbo/ (unpublished lecture notes, cf.)
[4] The limits of economy of material in framed-structures, Philosophical Magazine Ser. 6, Volume 8 (1904), pp. 589-597
[5] Optimal tensegrity structures in bending: The discrete Michell truss, Journal of Franklin Institute, Volume 347 (2010), pp. 257-283
Cité par Sources :
Commentaires - Politique