In this Note, we use the Bloch wave method to study the asymptotic behavior of the solution of the Laplace equation in a periodically perforated domain, under a non-homogeneous Neumann condition on the boundary of the holes, as the hole size goes to zero more rapidly than the domain period. We prove that for a critical size, the non-homogeneous boundary condition generates an additional term in the homogenized problem, commonly referred to as ‘the strange term’ in the literature.
Dans cette Note, nous utilisons la méthode des ondes de Bloch dans l'étude du comportement asymptotique de la solution de l'équation de Laplace dans un domaine périodiquement perforé sous une condition Neumann non homogène sur la frontière des perforations quand la taille des trous converge vers zéro plus rapidement que la période du domaine. On prouve que pour une taille critique, la condition non homogène génère un terme additionnel dans le problème homogénéisé, lequel est connue dans la littérature comme « le terme étrange ».
Accepted:
Published online:
Mot clés : Mécanique des solides numérique, Méthode des ondes de Bloch
Jaime Ortega 1; Jorge San Martín 2; Loredana Smaranda 3, 4
@article{CRMECA_2007__335_2_75_0, author = {Jaime Ortega and Jorge San Mart{\'\i}n and Loredana Smaranda}, title = {Bloch wave homogenization in a medium perforated by critical holes}, journal = {Comptes Rendus. M\'ecanique}, pages = {75--80}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2007}, doi = {10.1016/j.crme.2007.01.001}, language = {en}, }
TY - JOUR AU - Jaime Ortega AU - Jorge San Martín AU - Loredana Smaranda TI - Bloch wave homogenization in a medium perforated by critical holes JO - Comptes Rendus. Mécanique PY - 2007 SP - 75 EP - 80 VL - 335 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2007.01.001 LA - en ID - CRMECA_2007__335_2_75_0 ER -
Jaime Ortega; Jorge San Martín; Loredana Smaranda. Bloch wave homogenization in a medium perforated by critical holes. Comptes Rendus. Mécanique, Volume 335 (2007) no. 2, pp. 75-80. doi : 10.1016/j.crme.2007.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.01.001/
[1] Nonhomogeneous Neumann problems in domains with small holes, RAIRO Modél. Math. Anal. Numér., Volume 22 (1988), pp. 561-607
[2] Un terme étrange venu d'ailleurs, I, Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. II, Res. Notes in Math.Un terme étrange venu d'ailleurs, II, Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. III, Res. Notes in Math., vol. 60, Pitman, Boston, MA, 1982, pp. 98-138 (English translation:, A strange term coming from nowhere Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., vol. 31, 1997, Birkhäuser, Boston, pp. 45-93)
[3] Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications, vol. 5, North-Holland Publishing Co., Amsterdam, 1978
[4] Homogenization in open sets with holes, J. Math. Anal. Appl., Volume 71 (1979), pp. 590-607
[5] Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?, ESAIM Control Optim. Calc. Var., Volume 8 (2002), pp. 555-585 (electronic). A tribute to J.L. Lions
[6] H-convergence, Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl., vol. 31, Birkhäuser Boston, Boston, MA, 1997, pp. 21-43
[7] Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, Berlin, 1980
[8] Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math., Volume 57 (1997), pp. 1639-1659
[9] Bloch wave homogenization of scalar elliptic operators, Asymptot. Anal., Volume 39 (2004), pp. 15-44
[10] An approach for constructing families of homogenized equations for periodic media. II. Properties of the kernel, SIAM J. Math. Anal., Volume 22 (1991), pp. 16-33
[11] Homogenization of periodically perforate media, Indiana Univ. Math. J., Volume 48 (1999), pp. 1447-1470
[12] The Bloch approximation in periodically perforated media, Appl. Math. Optim., Volume 52 (2005), pp. 93-127
[13] J. Ortega, J. San Martín, L. Smaranda, Bloch wave homogenization of a non-homogeneous Neumann problem, Z. Angew. Math. Phys., in press
Cited by Sources:
Comments - Policy