[Attracteurs et un « terme étrange » dans les équations homogénéisées]
Nous étudions le comportement des attracteurs de l’équation de réaction–diffusion dans le domaine perforé car le petit paramètre caractérisant la perforation tend vers zéro.
We study the behavior of attractors of the reaction–diffusion equation in a perforated domain as the small parameter characterizing the perforation tends to zero.
Accepté le :
Publié le :
Keywords: Homogenization, Attractors, Reaction–diffusion equation, Boundary value problem, Perforated domain
Mot clés : Homogénéisation, Attracteurs, Équation de réaction–diffusion, Problème de valeur limite, Domaine perforé
Kuanysh A. Bekmaganbetov 1, 2 ; Gregory A. Chechkin 3, 4 ; Vladimir V. Chepyzhov 5, 6
@article{CRMECA_2020__348_5_351_0, author = {Kuanysh A. Bekmaganbetov and Gregory A. Chechkin and Vladimir V. Chepyzhov}, title = {Attractors and a {\textquotedblleft}strange term{\textquotedblright} in homogenized equation}, journal = {Comptes Rendus. M\'ecanique}, pages = {351--359}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {5}, year = {2020}, doi = {10.5802/crmeca.1}, language = {en}, }
TY - JOUR AU - Kuanysh A. Bekmaganbetov AU - Gregory A. Chechkin AU - Vladimir V. Chepyzhov TI - Attractors and a “strange term” in homogenized equation JO - Comptes Rendus. Mécanique PY - 2020 SP - 351 EP - 359 VL - 348 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmeca.1 LA - en ID - CRMECA_2020__348_5_351_0 ER -
Kuanysh A. Bekmaganbetov; Gregory A. Chechkin; Vladimir V. Chepyzhov. Attractors and a “strange term” in homogenized equation. Comptes Rendus. Mécanique, Volume 348 (2020) no. 5, pp. 351-359. doi : 10.5802/crmeca.1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.1/
[1] Boundary Value Problems in Domains with Fine-Grain Boundary, Naukova Dumka, Kiev, 1974 (Russian) | Zbl
[2] Homogenization of Partial Differential Equations, Birkhäuser, Boston (MA), 2006 | DOI | Zbl
[3] Un terme étrange venu d’ailleurs I & II, Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Volume II & III (H. Berzis; J. L. Lions, eds.) (Research Notes in Mathematics), Volume 60 & 70, Pitman, London, 1982 (98-138 & 154-178) | Zbl
[4] Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary, Sib. Math. J., Volume 39 (1998) no. 4, pp. 621-644 Translated from Sib. Mat. Z. 39 (1998) no. 4, p. 730-754) | DOI | Zbl
[5] Homogenization of boundary–value problem in a locally periodic perforated domain, Appl. Anal., Volume 71 (1999) no. 1-4, pp. 215-235 | DOI | MR | Zbl
[6] Averaging in a perforated domain with an oscillating third boundary condition, Russ. Acad. Sci. Sb. Math., Volume 192 (2001) no. 7, pp. 933-949 Translated from Mat. Sb. 192 (2001) no. 7, p. 3-20) | MR | Zbl
[7] Trajectory attractors for reaction–diffusion systems, Top. Meth. Nonlin. Anal. J. Julius Schauder Center, Volume 7 (1996) no. 1, pp. 49-76 | MR | Zbl
[8] Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence (RI), 2002 | Zbl
[9] Attractors of Evolution Equations, North–Holland, Amsterdam, 1992 (Moscow: Nauka; 1989) | Zbl
[10] Weak convergence of attractors of reaction–diffusion systems with randomly oscillating coefficients, Appl. Anal., Volume 98 (2019) no. 1-2, pp. 256-271 | DOI | MR | Zbl
[11] Mathematical tools for the study of the incompressible Navier–Stokes equations and related models, Applied Mathematical Sciences, Volume 183, Springer, New York (NY), 2013 | DOI | MR | Zbl
[12] Homogenization of Differential Operators and Integral Functionals, Springer Verlag, Berlin–New York, 1994
[13] Homogenization Techniques for Composite Media, Springer–Verlag, Berlin, 1987 | DOI | Zbl
[14] Partial Differential Equations, Mir, Moscow, 1978
[15] Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles, Appl. Anal., Volume 98 (2018) no. 1-2, pp. 232-255 | DOI | MR | Zbl
[16] Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematics Series, 68, Springer-Verlag, New York (NY), 1988
Cité par Sources :
Commentaires - Politique