[Modèle discret de structures tissées – Prise en compte du frottement entre fils]
Un modèle discret d'une structure tissée d'armure toile a été développé, qui s'appuie sur une description analogique, mettant en œuvre un ensemble d'éléments masse-ressort. Le modèle est construit à partir d'un réseau de nœuds dotés de masses et de rigidités en rotation, connectés par des barres supposées élastiques. Le modèle décrit le comportement d'une nappe de fils à l'échelle mésoscopique. La nouveauté du présent travail réside dans la considération de la compressibilité des fils, ainsi que des interactions de frottement entre fils. Une étude énergétique du système discret est menée, en considérant l'énergie de compression des fils, ainsi que le travail des efforts de réaction exercé par les fils. Un principe variationnel discret est établi, tenant compte des forces non holonomes dues au frottement. Des simulations en traction uniaxiales mettent en évidence l'effet du frottement et de la compressibilité des fils sur la réponse du tissé.
A discrete model of a fabric has been developed from an analogical description, using a mass-spring system of discrete elements. An element of fabric is modeled by a set of grid nodes endowed with a mass and connected with flexional and stretching springs. This model describes the mechanical behavior of a woven structure at a mesoscopic scale. As a novel contribution, the interactions and the friction between yarns are introduced in the present work. An energy analysis of the discrete system of analogical elements is performed, taking into account the compression strain energy of the yarns and the work of the reaction forces exerted between yarns. A suitable discrete variational principle, accounting for the presence of the nonholonomic forces arising from friction, serves as a basis for a numerical implementation. Simulations of uniaxial tractions are performed, that show the effect of the yarn–yarn friction and yarn compressibility on the fabric response.
Accepté le :
Publié le :
Mots-clés : Solides et structures, Structures tissées, Modèles discrets, Comportement mécanique, Interaction entre fils, Frottement entre fils
Bilel Ben Boubaker 1 ; Bernard Haussy 1 ; Jean-François Ganghoffer 2
@article{CRMECA_2007__335_3_150_0, author = {Bilel Ben Boubaker and Bernard Haussy and Jean-Fran\c{c}ois Ganghoffer}, title = {Discrete woven structure model: yarn-on-yarn friction}, journal = {Comptes Rendus. M\'ecanique}, pages = {150--158}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2007}, doi = {10.1016/j.crme.2007.02.006}, language = {en}, }
TY - JOUR AU - Bilel Ben Boubaker AU - Bernard Haussy AU - Jean-François Ganghoffer TI - Discrete woven structure model: yarn-on-yarn friction JO - Comptes Rendus. Mécanique PY - 2007 SP - 150 EP - 158 VL - 335 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2007.02.006 LA - en ID - CRMECA_2007__335_3_150_0 ER -
Bilel Ben Boubaker; Bernard Haussy; Jean-François Ganghoffer. Discrete woven structure model: yarn-on-yarn friction. Comptes Rendus. Mécanique, Volume 335 (2007) no. 3, pp. 150-158. doi : 10.1016/j.crme.2007.02.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.02.006/
[1] A continuum constitutive model for the mechanical behavior of woven fabrics, Int. J. Solids Structures, Volume 42 (2005), pp. 3867-3896
[2] A discrete model for the coupling between yarns in a woven fabric, C. R. Mecanique, Volume 331 (2003) no. 4, pp. 295-302
[3] Discrete models of fabric accounting for yarn interactions. Simulations of uniaxial and biaxial behaviour, European J. Finite Elements, Volume 14 (2005) no. 6–7, pp. 653-675 (Special Issue)
[4] Théorie de la Stabilité Elastique, Beranger, Paris & Liège, 1947
[5] Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests, Comput. Mater. Sci., Volume 17 (2000), pp. 7-20
[6] Prediction of shear force using 3D non-linear FEM analyses for a plain weave carbon fabric in a bias extension state, Finite Elements Anal. Design, Volume 38 (2002) no. 8, pp. 755-764
[7] The finite deformation theory of plane weave fabrics, J. Textile Inst., Volume 64 (1973), pp. 21-83
[8] SNECMA Moteurs, Le Haillan, France, Internal Report, 2002
[9] Measurement of friction between single fibers. II. Frictional properties of wool fibers measured by the fiber-twist method, Textile Res. J. ( May 1948 ), pp. 287-301
[10] Measurement of friction between single fibers. V. Frictional properties of viscose rayon staple fibers, Textile Res. J., Volume 20 (1950) no. 7, pp. 467-480
[11] Friction in fibrous materials, Textile Res. J., Volume 61 (1991) no. 9, pp. 547-555
[12] The laws of static friction, Textile Res. J. (1953), pp. 589-591
[13] British J. Appl. Phys., 44 (1953), p. T59
[14] Mathematical Modelling of Complex Mechanical Systems, vol. 1: Discrete Models, Ellis Horwood, Chichester, 1993
- Mechanical properties of pelvic implants: interaction between implants and tissue, Biomechanics of the Female Reproductive System: Breast and Pelvic Organs (2023), p. 247 | DOI:10.1016/b978-0-12-823403-7.00021-x
- Mathematics meets the fashion industry on path to product innovation and sustainability, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 479 (2023) no. 2274 | DOI:10.1098/rspa.2022.0715
- Study on the Multi-Directional Static Friction Properties of High Performance Yarns, Fibres Textiles in Eastern Europe, Volume 30 (2022) no. 3, p. 111 | DOI:10.2478/ftee-2022-0029
- The matching relation analysis of yarn pre-tension in weaving 3D bi-directional angle-interlock fabrics, Journal of Industrial Textiles, Volume 52 (2022) | DOI:10.1177/15280837221142240
- Estimating fibres' material parameter distributions from limited data with the help of Bayesian inference, European Journal of Mechanics. A. Solids, Volume 75 (2019), pp. 169-196 | DOI:10.1016/j.euromechsol.2019.01.001 | Zbl:1473.74005
- Multi-scale modelling and simulation of a highly deformable embedded biomedical textile mesh composite, Composites Part B: Engineering, Volume 143 (2018), p. 113 | DOI:10.1016/j.compositesb.2018.01.010
- Bibliography, Multiscale Biomechanics (2018), p. 511 | DOI:10.1016/b978-1-78548-208-3.50017-4
- Experimental evaluation of transverse friction between fibers, Tribology International, Volume 119 (2018), p. 112 | DOI:10.1016/j.triboint.2017.10.035
- New experimental device for measuring the inter-fiber transversal friction, IOP Conference Series: Materials Science and Engineering, Volume 254 (2017), p. 142020 | DOI:10.1088/1757-899x/254/14/142020
- Numerical study of inter-yarn friction on the failure of fabrics upon ballistic impacts, Materials Design, Volume 115 (2017), p. 299 | DOI:10.1016/j.matdes.2016.11.013
- Wear evaluation of three-dimensionally woven materials for use in a novel cartilage replacement, Wear, Volume 386-387 (2017), p. 179 | DOI:10.1016/j.wear.2017.06.012
- A mesoscopic model using the discrete element method for impacts on dry fabrics, Matériaux Techniques, Volume 104 (2016) no. 4, p. 408 | DOI:10.1051/mattech/2016022
- A micromechanical model of woven structures accounting for yarn–yarn contact based on Hertz theory and energy minimization, Composites Part B: Engineering, Volume 66 (2014), p. 368 | DOI:10.1016/j.compositesb.2014.05.027
- A multiscale quasicontinuum method for lattice models with bond failure and fiber sliding, Computer Methods in Applied Mechanics and Engineering, Volume 269 (2014), pp. 108-122 | DOI:10.1016/j.cma.2013.10.027 | Zbl:1296.74047
- Consistent geometrical modelling of interlock fabrics, Finite Elements in Analysis and Design, Volume 90 (2014), p. 93 | DOI:10.1016/j.finel.2014.05.010
- Modeling yarn slip in woven fabric at the continuum level: Simulations of ballistic impact, Journal of the Mechanics and Physics of Solids, Volume 61 (2013) no. 1, p. 265 | DOI:10.1016/j.jmps.2012.05.005
- Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization, Journal of the Mechanics and Physics of Solids, Volume 61 (2013) no. 12, p. 2537 | DOI:10.1016/j.jmps.2013.07.014
- Design and Potentiality of an Apparatus for Measuring Yarn/Yarn and Fabric/Fabric Friction, Experimental Mechanics, Volume 52 (2012) no. 8, p. 1123 | DOI:10.1007/s11340-011-9566-0
- Equivalent properties of monolayer fabric from mesoscopic modelling strategies, International Journal of Solids and Structures, Volume 48 (2011) no. 20, p. 2920 | DOI:10.1016/j.ijsolstr.2011.06.010
- An improved model of rigid bodies for plain-weave fabrics based on the dynamics of multibody systems, Textile Research Journal, Volume 81 (2011) no. 13, p. 1381 | DOI:10.1177/0040517511402128
- A Model of Rigid Bodies for Plain-Weave Fabrics Based on the Dynamics of Multibody Systems, Textile Research Journal, Volume 80 (2010) no. 19, p. 1995 | DOI:10.1177/0040517510371860
Cité par 21 documents. Sources : Crossref, zbMATH
Commentaires - Politique