We propose in this Note a method of identifying leak zones in a saturated and homogeneous porous domain by solving a Cauchy problem. The method is based on the minimisation of an energy-like error functional procedure developed in 2006 by Andrieux and Baranger.
Nous proposons dans ce travail, l'identification de fuites dans un domaine poreux homogène et saturé, en résolvant un problème de Cauchy. Cette résolution est effectuée au moyen d'une procédure de minimisation d'une fonctionnelle d'erreur énergétique développée en 2006 par Andrieux et Baranger.
Accepted:
Published online:
Mots-clés : Milieux poreux, Identification de fuites, Complétion de données, Problème de Cauchy, Loi de Darcy
Xavier Escriva 1, 2; Thouraya N. Baranger 2, 3, 4; Nejla Hariga Tlatli 5
@article{CRMECA_2007__335_7_401_0, author = {Xavier Escriva and Thouraya N. Baranger and Nejla Hariga Tlatli}, title = {Leak identification in porous media by solving the {Cauchy} problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {401--406}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2007}, doi = {10.1016/j.crme.2007.04.001}, language = {en}, }
TY - JOUR AU - Xavier Escriva AU - Thouraya N. Baranger AU - Nejla Hariga Tlatli TI - Leak identification in porous media by solving the Cauchy problem JO - Comptes Rendus. Mécanique PY - 2007 SP - 401 EP - 406 VL - 335 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2007.04.001 LA - en ID - CRMECA_2007__335_7_401_0 ER -
Xavier Escriva; Thouraya N. Baranger; Nejla Hariga Tlatli. Leak identification in porous media by solving the Cauchy problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 7, pp. 401-406. doi : 10.1016/j.crme.2007.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.04.001/
[1] Identification and reconstruction of a small leak zone in a pipe by a spectral element method, J. Sci. Comput., Volume 27 (2006) no. 1–3
[2] A computational algorithm for determining cracks from electrostatic boundary measurements, Int. J. Eng. Sci., Volume 29 (1991), pp. 917-938
[3] Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math., Volume 40 (1987)
[4] Solving Cauchy problems by minimizing an energy-like functional, Inv. Prob., Volume 22 (2006), pp. 115-133
[5] T.N. Baranger, S. Andrieux, An optimization approach for the Cauchy problem in linear elasticity, Structural and Multidisciplinary Optimization, , May 2007 | DOI
[6] Lectures on Cauchy's Problem in Linear Partial Differential Equation, Dover, New York, 1923
[7] Comsol Multiphysics, Copyright 1994–2006 by Comsol AB
Cited by Sources:
Comments - Policy