[Identification de fuites dans un milieu poreux par résolution du problème de Cauchy]
Nous proposons dans ce travail, l'identification de fuites dans un domaine poreux homogène et saturé, en résolvant un problème de Cauchy. Cette résolution est effectuée au moyen d'une procédure de minimisation d'une fonctionnelle d'erreur énergétique développée en 2006 par Andrieux et Baranger.
We propose in this Note a method of identifying leak zones in a saturated and homogeneous porous domain by solving a Cauchy problem. The method is based on the minimisation of an energy-like error functional procedure developed in 2006 by Andrieux and Baranger.
Accepté le :
Publié le :
Mots-clés : Milieux poreux, Identification de fuites, Complétion de données, Problème de Cauchy, Loi de Darcy
Xavier Escriva 1, 2 ; Thouraya N. Baranger 2, 3, 4 ; Nejla Hariga Tlatli 5
@article{CRMECA_2007__335_7_401_0, author = {Xavier Escriva and Thouraya N. Baranger and Nejla Hariga Tlatli}, title = {Leak identification in porous media by solving the {Cauchy} problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {401--406}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2007}, doi = {10.1016/j.crme.2007.04.001}, language = {en}, }
TY - JOUR AU - Xavier Escriva AU - Thouraya N. Baranger AU - Nejla Hariga Tlatli TI - Leak identification in porous media by solving the Cauchy problem JO - Comptes Rendus. Mécanique PY - 2007 SP - 401 EP - 406 VL - 335 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2007.04.001 LA - en ID - CRMECA_2007__335_7_401_0 ER -
Xavier Escriva; Thouraya N. Baranger; Nejla Hariga Tlatli. Leak identification in porous media by solving the Cauchy problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 7, pp. 401-406. doi : 10.1016/j.crme.2007.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.04.001/
[1] Identification and reconstruction of a small leak zone in a pipe by a spectral element method, J. Sci. Comput., Volume 27 (2006) no. 1–3
[2] A computational algorithm for determining cracks from electrostatic boundary measurements, Int. J. Eng. Sci., Volume 29 (1991), pp. 917-938
[3] Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math., Volume 40 (1987)
[4] Solving Cauchy problems by minimizing an energy-like functional, Inv. Prob., Volume 22 (2006), pp. 115-133
[5] T.N. Baranger, S. Andrieux, An optimization approach for the Cauchy problem in linear elasticity, Structural and Multidisciplinary Optimization, , May 2007 | DOI
[6] Lectures on Cauchy's Problem in Linear Partial Differential Equation, Dover, New York, 1923
[7] Comsol Multiphysics, Copyright 1994–2006 by Comsol AB
- Data completion problem for the advection‐diffusion equation with aquifer point sources, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 2, p. 1651 | DOI:10.1002/mma.6868
- Nonlinear Cauchy problem and identification in contact mechanics: a solving method based on Bregman-gap, Inverse Problems, Volume 36 (2020) no. 11, p. 115012 | DOI:10.1088/1361-6420/abbc76
- Leak identification in a saturated unsteady flow via a Cauchy problem, Applied Mathematical Modelling, Volume 41 (2017), p. 25 | DOI:10.1016/j.apm.2016.03.004
- Identification of injection and extraction wells from overspecified boundary data, Inverse Problems in Science and Engineering, Volume 25 (2017) no. 8, p. 1091 | DOI:10.1080/17415977.2016.1222527
- On the determination of missing boundary data for solids with nonlinear material behaviors, using displacement fields measured on a part of their boundaries, Journal of the Mechanics and Physics of Solids, Volume 97 (2016), p. 140 | DOI:10.1016/j.jmps.2016.02.008
- Solution of nonlinear Cauchy problem for hyperelastic solids, Inverse Problems, Volume 31 (2015) no. 11, p. 115003 | DOI:10.1088/0266-5611/31/11/115003
- Land–sea interface identification and submarine groundwater exchange (SGE) estimation, Computers Fluids, Volume 88 (2013), p. 569 | DOI:10.1016/j.compfluid.2013.10.015
- On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach, Inverse Problems Imaging, Volume 6 (2012) no. 1, p. 25 | DOI:10.3934/ipi.2012.6.25
- Constitutive law gap functionals for solving the Cauchy problem for linear elliptic PDE, Applied Mathematics and Computation, Volume 218 (2011) no. 5, p. 1970 | DOI:10.1016/j.amc.2011.07.009
- Recovering data in groundwater: boundary conditions and Wells’ positions and fluxes, Computational Geosciences, Volume 15 (2011) no. 4, p. 637 | DOI:10.1007/s10596-011-9231-9
- Misfit functional for recovering data in 2D ElectroCardioGraphy problems, Engineering Analysis with Boundary Elements, Volume 34 (2010) no. 5, p. 492 | DOI:10.1016/j.enganabound.2009.12.006
- Energy methods for Cauchy problems of evolutions equations, Journal of Physics: Conference Series, Volume 135 (2008), p. 012007 | DOI:10.1088/1742-6596/135/1/012007
- Leaks identification on a Darcy model by solving Cauchy problem, Journal of Physics: Conference Series, Volume 135 (2008), p. 012039 | DOI:10.1088/1742-6596/135/1/012039
Cité par 13 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier