Comptes Rendus
Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh–Bénard systems
Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 253-260.

Secondary and oscillatory instabilities in thermal gravitational convection have been the focus of intensive studies over recent years due to their relevance in materials science, and in particular, in the field of crystal growth from the melt. The purpose of the present discussion is to provide a comparative and critical review of the subject through examination of existing studies and very recent contributions. It complements earlier reviews (Lappa, 2005) that were limited to the survey of steady three-dimensional symmetry breaking effects and/or the primary bifurcation of the flow.

Les instabilités secondaires et oscillatoires pour la convection gravitationnelle thermique ont fait l'objet d'études intensives durant les dernières années du fait de leur pertinence en science des matériaux, et plus particulièrement dans le domaine de la croissance cristalline. Le but de la présente discussion est de fournir une revue comparative et critique du sujet par l'examen des études existantes et de contributions très récentes. Il complète les précédentes revues (Lappa, 2005) qui ont été restreintes à la brisure de symétrie tridimensionnelle dans le cas stationnaire et/ou à la première bifurcation de l'écoulement.

Published online:
DOI: 10.1016/j.crme.2007.05.003
Keywords: Computational fluid dynamic, Thermal convection, Transitions
Mot clés : Mécanique des fluides numérique, Transitions, Convection thermique

Marcello Lappa 1, 2

1 MARS (Microgravity Advanced Research and Support) Center, Via Gianturco, 31, 80146 Napoli, Italy
2 Via Salvator Rosa 53, 80046 San Giorgio a Cremano (Na), Italy
@article{CRMECA_2007__335_5-6_253_0,
     author = {Marcello Lappa},
     title = {Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. {Part} 1: {Rayleigh{\textendash}B\'enard} systems},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {253--260},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.003},
     language = {en},
}
TY  - JOUR
AU  - Marcello Lappa
TI  - Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh–Bénard systems
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 253
EP  - 260
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.003
LA  - en
ID  - CRMECA_2007__335_5-6_253_0
ER  - 
%0 Journal Article
%A Marcello Lappa
%T Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh–Bénard systems
%J Comptes Rendus. Mécanique
%D 2007
%P 253-260
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.003
%G en
%F CRMECA_2007__335_5-6_253_0
Marcello Lappa. Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 1: Rayleigh–Bénard systems. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 253-260. doi : 10.1016/j.crme.2007.05.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.003/

[1] M. Lappa Thermal convection and related instabilities in models of crystal growth from the melt on earth and in microgravity: Past history and current status, Cryst. Res. Technol., Volume 40 (2005) no. 6, pp. 531-549

[2] M. Lappa On the nature and structure of possible three-dimensional steady flows in closed and open parallelepipedic and cubical containers under different heating conditions and driving forces, Fluid Dynam. Mater. Process., Volume 1 (2005) no. 1, pp. 1-19

[3] A.Yu. Gelfgat Different modes of Rayleigh–Bénard instability in two- and three-dimensional rectangular enclosures, J. Comput. Phys., Volume 156 (1999), pp. 300-324

[4] J.M. Luijkx; J.K. Platten On the onset of free convection in a rectangular channel, J. Non-Equilibrium Thermodynam., Volume 6 (1981), p. 141

[5] F.H. Busse Non-stationary finite amplitude convection, J. Fluid Mech., Volume 28 (1967), pp. 223-239

[6] J.P. Gollub; S.V. Benson Many routes to turbulent convection, J. Fluid Mech., Volume 100 (1980), pp. 449-470

[7] D. Mukutmoni; K.T. Yang Rayleigh–Bénard convection in a small aspect ratio enclosure: Part I—bifurcation to oscillatory convection, ASME J. Heat Transfer, Volume 115 (1993), pp. 360-366

[8] F. Stella; E. Bucchignani Rayleigh–Bénard convection in limited domains: Part 1—oscillatory flow, Numer. Heat Transfer Part A, Volume 36 (1999) no. 1, pp. 1-16

[9] D.F. Edwards Crossed rolls at onset of convection in a rigid box, J. Fluid Mech., Volume 191 (1988), pp. 583-597

[10] P. Kolodner; R. Walden; A. Passner; C. Surko Rayleigh–Bénard convection in an intermediate aspect ratio rectangular container, J. Fluid Mech., Volume 163 (1986), pp. 195-226

[11] F. Stella; G. Guj; E. Leonardi The Rayleigh–Bénard problem in intermediate bounded domain, J. Fluid Mech., Volume 254 (1993), pp. 375-400

[12] L.Q. Tang; T.T.H. Tsang Temporal, spatial and thermal features of 3-D Rayleigh–Bénard convection by a least-squares finite element method, Comput. Methods Appl. Mech. Engrg., Volume 140 (1997), pp. 201-219

[13] D. Mukutmoni; K.T. Yang Pattern selection for Rayleigh–Bénard convection in intermediate aspect ratio boxes, Numer. Heat Transfer Part A, Volume 27 (1995) no. 6, pp. 621-637

[14] R.M. Clever; F.H. Busse Transition to time-dependent convection, J. Fluid Mech., Volume 65 (1974), pp. 625-645

[15] D. Mukutmoni; K.T. Yang Rayleigh–Bénard convection in a small aspect ratio enclosure: Part II—bifurcation to chaos, ASME J. Heat Transfer, Volume 115 (1993), pp. 367-376

[16] F.H. Busse The oscillatory instability of convection rolls in a low Prandtl number fluid, J. Fluid Mech., Volume 52 (1972), pp. 97-112

[17] F.H. Busse; J.A. Whitehead Oscillatory and collective instabilities in large Prandtl number convection, J. Fluid Mech., Volume 66 (1974), pp. 67-79

[18] R. Krishnamurti Some further studies on the transition to turbulent convection, J. Fluid Mech., Volume 60 (1973), pp. 285-303

[19] H. Tomita; K. Abe Numerical simulation of the Rayleigh–Bénard convection of air in a box of a large aspect ratio, Phys. Fluids, Volume 11 (1999), pp. 743-745

[20] C. Xia; J.Y. Murthy Buoyancy-driven flow transitions in deep cavities heated from below, J. Heat Transfer, Volume 124 (2002) no. 4, pp. 650-659

[21] E. Bucchignani; F. Stella Rayleigh–Bénard convection in limited domains: Part 2—transition to chaos, Numer. Heat Transfer Part A, Volume 36 (1999) no. 1, pp. 17-34

[22] G.S. Charlson; R. Sani On the thermoconvective instability in a bounded cylindrical fluid layer, Int. J. Heat Mass Transfer, Volume 14 (1971), pp. 2157-2160

[23] J.C. Buell; I. Catton The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below, Trans. ASME J. Heat Transfer, Volume 105 (1983), pp. 255-260

[24] B. Hof; G.J. Lucas; T. Mullin Flow state multiplicity in convection, Phys. Fluids, Volume 11 (1999), pp. 2815-2817

[25] S.S. Leong Numerical study of Rayleigh–Bénard convection in a cylinder, Numer. Heat Transfer Part A, Volume 41 (2002), pp. 673-683

[26] R. Touihri; H. Ben Hadid; D. Henry On the onset of convective instabilities in cylindrical cavities heated from below, I. Pure thermal case. Phys. Fluids, Volume 11 (1999) no. 8, pp. 2078-2088

[27] G. Muller; G. Neumann; W. Weber Natural convection in vertical Bridgman configurations, J. Cryst. Growth, Volume 70 (1984), pp. 78-93

[28] R.S. Figliola Convection transitions within a vertical cylinder heated from below, Phys. Fluids, Volume 29 (1986) no. 7, pp. 2028-2031

[29] E. Crespo Del Arco; P. Bontoux Numerical simulations and analysis of axisymmetric convection in a vertical cylinder: An effect of Prandtl number, Phys. Fluids A, Volume 1 (1989), pp. 1348-1359

[30] G. Neumann Three-dimensional numerical simulation of buoyancy driven convection in vertical cylinders heated from below, J. Fluid Mech., Volume 214 (1990), pp. 559-578

[31] B.B. Plapp; D.A. Egolf; E. Bodenschatz; W. Pesch Dynamics and selection of giant spirals in Rayleigh–Bénard convection, Phys. Rev. Lett., Volume 81 (1998), pp. 5334-5337

[32] S. Rudiger; F. Feudel Pattern formation in Rayleigh–Bénard convection in a cylindrical container, Phys. Rev. E, Volume 62 (2000), pp. 4927-4931

[33] V. Croquette; M. Mory; F. Schosseler Rayleigh–Bénard convective structures in a cylindrical container, J. Phys., Volume 44 (1986), pp. 293-301

[34] L.S. Tuckerman; D. Barkley Global bifurcation to travelling waves in axisymmetric convection, Phys. Rev. Lett., Volume 61 (1988), pp. 408-411

[35] M. Wanschura; H.C. Kuhlmann; H.J. Rath Three-dimensional instability of axisymmetric buoyant convection in cylinders heated from below, J. Fluid Mech., Volume 326 (1996), pp. 399-415

[36] K. Boronska; L.S. Tuckerman Standing and travelling waves in cylindrical Rayleigh–Bénard convection, J. Fluid Mech., Volume 559 (2006), pp. 279-298

[37] E. Crespo del Arco; P. Bountoux; R.L. Sani; G. Hardin; G.P. Extrémet Steady and oscillatory convection in vertical cylinders heated from below. Numerical simulation of asymmetric flow regimes, Adv. Space Res., Volume 8 (1988) no. 12, pp. 281-292

[38] R. Verzicco; R. Camussi Transitional regimes of low-Prandtl thermal convection in a cylindrical shell, Phys. Fluids, Volume 9 (1997) no. 5, pp. 1287-1295

[39] T. Takeshita; T. Segawa; J.A. Glazier; M. Sano Thermal turbulence in mercury, Phys. Rev. Lett., Volume 76 (1996), pp. 1465-1468

[40] S. Cioni; S. Ciliberto; J. Sommeria Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number, J. Fluid Mech., Volume 335 (1997), pp. 111-140

[41] Y. Kamotani; F.-B. Weng; S. Ostrach; J. Platt Oscillatory natural convection of a liquid metal in circular cylinders, J. Heat Transfer, Volume 116 (1994), pp. 627-632

[42] J. Kaenton; E. Semma; V. Timchenko; E. Leonardi; M. El Ganaoui; G. de Vahl Davis Effects of anisotropy and solid/liquid thermal conductivity ratio on flow instabilities during inverted Bridgman growth, Int. J. Heat Mass Transfer, Volume 47 (2004) no. 14–16, pp. 3403-3413

[43] R. Bennacer; M. El Ganaoui; E. Leonardi Symmetry breaking of melt flow typically encountered in a Bridgman configuration heated from below, Appl. Math. Model., Volume 30 (2006) no. 11, pp. 1249-1261

[44] A.P. Vincent; D.A. Yuen Plumes and waves in two-dimensional turbulent thermal convection, Phys. Rev. E, Volume 60 (1999) no. 3, pp. 2957-2963

[45] L.P. Kadanoff Turbulent heat flow: Structures and scaling, Phys. Today, Volume 54 (2001) no. 8, pp. 34-39

[46] X.-L. Qiu; P. Tong Large-scale velocity structures in turbulent thermal convection, Phys. Rev. E, Volume 64 (2001) no. 3, p. 036304 (13 pp)

[47] H.D. Xi; S. Lam; K.Q. Xia From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection, J. Fluid Mech., Volume 503 (2004), pp. 47-56

[48] G.K. Batchelor Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures, Q. Appl. Math., Volume 12 (1954), pp. 209-233

[49] E. Kaminski; C. Jaupart Laminar starting plumes in high-Prandtl-number fluids, J. Fluid Mech., Volume 478 (2003), pp. 287-298

[50] C.A. Hier Majumder; D.A. Yuen; A. Vincent Four dynamical regimes for a starting plume model, Phys. Fluids, Volume 16 (2004) no. 5, pp. 1516-1531

[51] T. Cortese; S. Balachandar Vortical nature of thermal plumes in turbulent convection, Phys. Fluids A, Volume 5 (1993), pp. 3226-3232

Cited by Sources:

Comments - Policy