The aim of this study is to better understand the basic mechanisms leading to defect occurrence in spot laser welding. For that purpose we have developed a numerical model, which takes into account the key-hole dynamics together with a dedicated energy deposition model featuring the multiple reflection effects. Many experiments have also been achieved enabling us to report several defect classes. The analysis of some of these scenarios have been performed, and favourably compared to experiments.
L'objectif de cette étude vise à mieux comprendre les mécanismes de base à l'origine de défauts en cours de soudage par laser impulsionnel. Dans ce but, nous avons développé un modèle numérique qui tient compte de la dynamique de creusement en mode key-hole, ainsi qu'un modèle de dépôt d'énergie incluant les effets de réflexions multiples. Plusieurs expériences ont permis de mettre en évidence divers types de défauts. Les simulations numériques de certains de ces scénarios ont été effectuées et comparées aux résultats éxpérimentaux.
Mot clés : Mécanique des fluides numérique, Soudage laser impulsionnel, Surface libre et mobile
Marc Medale 1; Charline Xhaard 1, 2; Rémy Fabbro 3
@article{CRMECA_2007__335_5-6_280_0, author = {Marc Medale and Charline Xhaard and R\'emy Fabbro}, title = {A thermo-hydraulic numerical model to study spot laser welding}, journal = {Comptes Rendus. M\'ecanique}, pages = {280--286}, publisher = {Elsevier}, volume = {335}, number = {5-6}, year = {2007}, doi = {10.1016/j.crme.2007.05.013}, language = {en}, }
TY - JOUR AU - Marc Medale AU - Charline Xhaard AU - Rémy Fabbro TI - A thermo-hydraulic numerical model to study spot laser welding JO - Comptes Rendus. Mécanique PY - 2007 SP - 280 EP - 286 VL - 335 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2007.05.013 LA - en ID - CRMECA_2007__335_5-6_280_0 ER -
Marc Medale; Charline Xhaard; Rémy Fabbro. A thermo-hydraulic numerical model to study spot laser welding. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 280-286. doi : 10.1016/j.crme.2007.05.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.013/
[1] Proc. SPIE Conf. (Bellingham, SPIE), 3888 (2000), pp. 418-428
[2] Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc, J. Phys. D: Appl. Phys., Volume 35 (2002), pp. 1218-1228
[3] Keyhole modelling during laser welding, J. Phys. D: Appl. Phys., Volume 87 (2000), pp. 4075-4083
[4] Modelling of vapour flow in deep penetration laser welding, J. Phys. D: Appl. Phys., Volume 35 (2002), pp. 272-280
[5] A generalized thermal modelling for laser drilling process—I. Mathematical modelling and numerical methodology, J. Heat Mass Transfer, Volume 40 (1997), pp. 3351-3360
[6] A generalized thermal modelling for laser drilling process—II. Numerical simulation and results, J. Heat Mass Transfer, Volume 40 (1997), pp. 3361-3373
[7] Temporal evolution of the temperature field in the beam interaction zone during laser-material processing, J. Phys. D: Appl. Phys., Volume 32 (1999), pp. 1819-1825
[8] An analytical model for laser drilling of metals with absorption within the vapour, J. Phys. D: Appl. Phys., Volume 32 (1999), pp. 942-952
[9] Laser Welding, Wiley Interscience, New York, 1999
[10] Keyhole formation and power deposition in ND:YAG laser spot welding, J. Phys. D: Appl. Phys., Volume 34 (2001), pp. 2894-2901
[11] Modelling of high density laser material interaction using fast level set method, J. Phys. D: Appl. Phys., Volume 34 (2001), pp. 364-372
[12] Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003), pp. 4703-4721
[13] A thermo-hydraulic numerical model for high energy welding processes, Rev. Eur. Elements Finis, Volume 13 (2004), pp. 207-229
[14] A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems—1. Model formulation, 2. Application to solidification in a rectangular cavity, Int. J. Heat Mass Transfer, Volume 30 (1987), pp. 2161-2187
[15] Extension of the continuum model for transport phenomena occurring during metal alloy solidification—1. The conservation equations, 2. Microscopic considerations, Int. J. Heat Mass Transfer, Volume 38 (1995), pp. 1271-1296
[16] A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems, Int. J. Heat Mass Transfer, Volume 24 (1987), pp. 1709-1718
Cited by Sources:
Comments - Policy