Comptes Rendus
A thermo-hydraulic numerical model to study spot laser welding
Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 280-286.

The aim of this study is to better understand the basic mechanisms leading to defect occurrence in spot laser welding. For that purpose we have developed a numerical model, which takes into account the key-hole dynamics together with a dedicated energy deposition model featuring the multiple reflection effects. Many experiments have also been achieved enabling us to report several defect classes. The analysis of some of these scenarios have been performed, and favourably compared to experiments.

L'objectif de cette étude vise à mieux comprendre les mécanismes de base à l'origine de défauts en cours de soudage par laser impulsionnel. Dans ce but, nous avons développé un modèle numérique qui tient compte de la dynamique de creusement en mode key-hole, ainsi qu'un modèle de dépôt d'énergie incluant les effets de réflexions multiples. Plusieurs expériences ont permis de mettre en évidence divers types de défauts. Les simulations numériques de certains de ces scénarios ont été effectuées et comparées aux résultats éxpérimentaux.

Published online:
DOI: 10.1016/j.crme.2007.05.013
Keywords: Computational fluid mechanics, Spot laser welding, Free and moving interface
Mot clés : Mécanique des fluides numérique, Soudage laser impulsionnel, Surface libre et mobile

Marc Medale 1; Charline Xhaard 1, 2; Rémy Fabbro 3

1 Polytech'Marseille et IUSTI, UMR 6595 CNRS-université de Provence, technopole de Château-Gombert, 5, rue Enrico-Fermi, 13453 Marseille cedex 13, France
2 CEA Valduc, DFTN/SPAC/LSO, 21000 Is-sur-Tille, France
3 CLFA/LALP, UPR CNRS 1578, 16 bis, avenue Prieur de la Côte d'Or, 94114 Arcueil cedex, France
@article{CRMECA_2007__335_5-6_280_0,
     author = {Marc Medale and Charline Xhaard and R\'emy Fabbro},
     title = {A thermo-hydraulic numerical model to study spot laser welding},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {280--286},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.013},
     language = {en},
}
TY  - JOUR
AU  - Marc Medale
AU  - Charline Xhaard
AU  - Rémy Fabbro
TI  - A thermo-hydraulic numerical model to study spot laser welding
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 280
EP  - 286
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.013
LA  - en
ID  - CRMECA_2007__335_5-6_280_0
ER  - 
%0 Journal Article
%A Marc Medale
%A Charline Xhaard
%A Rémy Fabbro
%T A thermo-hydraulic numerical model to study spot laser welding
%J Comptes Rendus. Mécanique
%D 2007
%P 280-286
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.013
%G en
%F CRMECA_2007__335_5-6_280_0
Marc Medale; Charline Xhaard; Rémy Fabbro. A thermo-hydraulic numerical model to study spot laser welding. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 280-286. doi : 10.1016/j.crme.2007.05.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.013/

[1] K. Girard; J.M. Jouvard; J. Boquillon; P. Bouilly; P. Naudy Proc. SPIE Conf. (Bellingham, SPIE), 3888 (2000), pp. 418-428

[2] A. Kaplan; M. Mizutani; S. Katayama; A. Matsunawa Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc, J. Phys. D: Appl. Phys., Volume 35 (2002), pp. 1218-1228

[3] R. Fabbro; K. Chouf Keyhole modelling during laser welding, J. Phys. D: Appl. Phys., Volume 87 (2000), pp. 4075-4083

[4] E. Amara; A. Bendib Modelling of vapour flow in deep penetration laser welding, J. Phys. D: Appl. Phys., Volume 35 (2002), pp. 272-280

[5] R.K. Ganesh; A. Faghri; Y. Hahn A generalized thermal modelling for laser drilling process—I. Mathematical modelling and numerical methodology, J. Heat Mass Transfer, Volume 40 (1997), pp. 3351-3360

[6] R.K. Ganesh; A. Faghri; Y. Hahn A generalized thermal modelling for laser drilling process—II. Numerical simulation and results, J. Heat Mass Transfer, Volume 40 (1997), pp. 3361-3373

[7] W. Semak; W.D. Bragg; B. Damkroger; S. Kempkas Temporal evolution of the temperature field in the beam interaction zone during laser-material processing, J. Phys. D: Appl. Phys., Volume 32 (1999), pp. 1819-1825

[8] P. Solana; P. Kapadia; J.M. Dowden; P.J. Marsden An analytical model for laser drilling of metals with absorption within the vapour, J. Phys. D: Appl. Phys., Volume 32 (1999), pp. 942-952

[9] W.W. Duley Laser Welding, Wiley Interscience, New York, 1999

[10] J.M. Jouvard; K. Girard; O. Perret Keyhole formation and power deposition in ND:YAG laser spot welding, J. Phys. D: Appl. Phys., Volume 34 (2001), pp. 2894-2901

[11] H. Ki; P.S. Mohanty; H. Mazumder Modelling of high density laser material interaction using fast level set method, J. Phys. D: Appl. Phys., Volume 34 (2001), pp. 364-372

[12] S. Rabier; M. Medale Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003), pp. 4703-4721

[13] M. Medale; S. Rabier; C. Xhaard A thermo-hydraulic numerical model for high energy welding processes, Rev. Eur. Elements Finis, Volume 13 (2004), pp. 207-229

[14] W.D. Bennon; F.P. Incropera A continuum model for momentum, heat and species transport in binary solid–liquid phase change systems—1. Model formulation, 2. Application to solidification in a rectangular cavity, Int. J. Heat Mass Transfer, Volume 30 (1987), pp. 2161-2187

[15] J. Ni; F.P. Incropera Extension of the continuum model for transport phenomena occurring during metal alloy solidification—1. The conservation equations, 2. Microscopic considerations, Int. J. Heat Mass Transfer, Volume 38 (1995), pp. 1271-1296

[16] V.R. Voller; C. Prakash A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problems, Int. J. Heat Mass Transfer, Volume 24 (1987), pp. 1709-1718

Cited by Sources:

Comments - Policy