Comptes Rendus
Three-dimensional finite element model for metal displacement and heat transfer in squeeze casting processes
Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 287-294.

A three-dimensional finite element model for the numerical simulation of metal displacement and heat transfer in the squeeze casting process has been developed. In the model, a numerical approach, termed as ‘Quasi-static Eulerian’, is proposed, in which the dynamic metal displacement process is divided into a certain number of sub-cycles. In each of the sub-cycles, the dieset configuration is assumed to be static and a fixed finite element mesh is created, thus making the Eulerian approach applicable to the solution of metal flow and heat transfer. Mesh-to-mesh data mapping is carried out for any two adjacent sub-cycles to ensure that the physical continuity of the real metal displacement process is represented. A numerical example is presented, which shows the application of the present model to geometrically complex three-dimensional squeeze casting problems.

Un modèle tridimensionnel basé sur l'approche éléments-finis à été développé pour la simulation numérique du déplacement du métal et des transferts thermiques lors du processus de moulage–forgeage. Dans le modèle, l'approche numérique, dénommée « Quasi-static Eulerian » est proposée, où le déplacement de métal est divisé en un certain nombre de sous-cycles. Dans chaque sous-cycle, la configuration est supposée être statique et un maillage élément-finis fixe est généré, ceci permettant l'utilisation de l'approche Eulérienne à la solution du métal en écoulement et aux transferts de chaleur. Le traitement d'information de grille à grille est possible entre les deux sous-cycles adjacents et permet d'assurer et de représenter la continuité physique du processus de déplacement réel du métal. Un exemple numérique est présenté, et montre l'application du présent modèle à des géométries complexes tridimensionnelles de problème de moulage forgeage.

Published online:
DOI: 10.1016/j.crme.2007.05.016
Keywords: Computational fluid mechanics, Squeeze casting, Finite-element, Punch
Mot clés : Mécanique des fluides numérique, Moulage forgeage, Eléments-finis, Poinçon

Roland W. Lewis 1; Z.Q. Han 1; David T. Gethin 1

1 School of Engineering, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
@article{CRMECA_2007__335_5-6_287_0,
     author = {Roland W. Lewis and Z.Q. Han and David T. Gethin},
     title = {Three-dimensional finite element model for metal displacement and heat transfer in squeeze casting processes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {287--294},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.016},
     language = {en},
}
TY  - JOUR
AU  - Roland W. Lewis
AU  - Z.Q. Han
AU  - David T. Gethin
TI  - Three-dimensional finite element model for metal displacement and heat transfer in squeeze casting processes
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 287
EP  - 294
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.016
LA  - en
ID  - CRMECA_2007__335_5-6_287_0
ER  - 
%0 Journal Article
%A Roland W. Lewis
%A Z.Q. Han
%A David T. Gethin
%T Three-dimensional finite element model for metal displacement and heat transfer in squeeze casting processes
%J Comptes Rendus. Mécanique
%D 2007
%P 287-294
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.016
%G en
%F CRMECA_2007__335_5-6_287_0
Roland W. Lewis; Z.Q. Han; David T. Gethin. Three-dimensional finite element model for metal displacement and heat transfer in squeeze casting processes. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 287-294. doi : 10.1016/j.crme.2007.05.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.016/

[1] J. Campbell Castings, Butterworth-Heinemann, 1991 (pp. 72–73)

[2] A.J. Clegg Precision Casting Processes, Pergamon Press, 1991 (pp. 200–207)

[3] T.M. Yue; G.A. Chadwick J. Mater. Process. Technol., 58 (1996), pp. 302-307

[4] M.R. Ghomashchi; A. Vikhrov J. Mater. Process. Technol., 101 (2000), pp. 1-9

[5] A.S. Usmani; J.T. Cross; R.W. Lewis Int. J. Numer. Methods Engrg., 35 (1992), pp. 787-806

[6] A.S. Usmani; J.T. Cross; R.W. Lewis J. Mater. Process. Technol., 38 (1993), pp. 291-302

[7] R.W. Lewis; A.S. Usmani; J.T. Cross Int. J. Numer. Methods Fluids, 20 (1995), pp. 493-506

[8] R.W. Lewis; S.E. Navti; C. Taylor Int. J. Numer. Methods Fluids, 25 (1997), pp. 931-952

[9] D.T. Gethin; R.W. Lewis; M.R. Tadayon Int. J. Numer. Methods Engrg., 35 (1992), pp. 939-950

[10] C.W. Hirt; J.L. Cook J. Comput. Phys., 5 (1970), pp. 103-124

[11] I. Malcevic; O. Ghattas Finite Elements Anal. Design, 38 (2002), pp. 965-982

[12] K. Ravindran; R.W. Lewis Finite Elements Anal. Design, 31 (1998), pp. 99-116

[13] M. Souli; J.P. Zolesio Comput. Methods Appl. Mech. Engrg., 191 (2001), pp. 451-466

[14] H. Braess; P. Wriggers Comput. Methods Appl. Mech. Engrg., 190 (2000), pp. 95-109

[15] T.R.J. Hughes The Finite Element Method. Linear Static and Dynamic Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987

[16] R.W. Lewis; K. Ravindran Int. J. Numer. Methods Engrg., 47 (2000), pp. 29-59

[17] P.R. Amestoy, I.S. Duff, J.Y. L'Excellent, J. Koster, MUltifrontal Massively Parallel Solver (MUMPS Version 4.3) Users' Guide, 2003

[18] H.C. Huang; A.S. Usmani Finite Element Analysis for Heat Transfer: Theory and Software, Springer-Verlag, London, 1994 (pp. 118–120)

[19] R.W. Lewis; K. Ravindran; A.S. Usmani Arch. Comput. Methods Engrg., 4 (1995), pp. 69-93

[20] R. Codina; U. Schafer; E. Onate Int. J. Numer. Methods Heat Fluid Flow, 4 (1994), pp. 291-310

Cited by Sources:

Comments - Policy