We propose a method which accounts for an evolving microstructure in homogenisation problems. The concept of the method is quite general and can be applied to a number of different problems. It makes use of a transformation to a homogenisable substitute problem on a fixed periodic domain.
On propose une méthode pour inclure une évolution de la micro-structure en problème d'homogénéisation. L'idée de la méthode est assez générale et peut être employée pour une diversité de problèmes différents. Elle utilise la transformation d'un problème substitué homogénéisé dans un domaine fixe périodique.
Accepted:
Published online:
Mots-clés : Homogénéisation, Approche multiéchelle, Milieux poreux, Reaction et diffusion, Transport de masse à travers une surface de séparation
Malte A. Peter 1
@article{CRMECA_2007__335_7_357_0, author = {Malte A. Peter}, title = {Homogenisation in domains with evolving microstructure}, journal = {Comptes Rendus. M\'ecanique}, pages = {357--362}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2007}, doi = {10.1016/j.crme.2007.05.024}, language = {en}, }
Malte A. Peter. Homogenisation in domains with evolving microstructure. Comptes Rendus. Mécanique, Volume 335 (2007) no. 7, pp. 357-362. doi : 10.1016/j.crme.2007.05.024. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.024/
[1] Asymptotic Analysis for Periodic Structures, North-Holland, 1978
[2] Non-Homogeneous Media and Vibration Theory, Springer, 1980
[3] An Introduction to Homogenization, Oxford University Press, 1999
[4] The classical field theories (S. Flügge, ed.), Handbuch der Physik III/1, Springer, 1960, pp. 226-793
[5] M.A. Peter, Coupled reaction–diffusion systems and evolving microstructure: mathematical modelling and homogenisation, PhD dissertation, University of Bremen, Germany, 2006. Also: Logos Verlag Berlin, 2007
[6] Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, 1997
[7] A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-629
[8] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[9] A two-scale reaction–diffusion system with time-dependent microstructure, Proc. Appl. Math. Mech., Volume 6 (2006) no. 1, pp. 647-648
[10] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 823-836
[11] Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differential Equations, Volume 92 (1991), pp. 199-225
[12] (U. Hornung, ed.), Homogenization and Porous Media, Springer, 1997
[13] M.A. Peter, M. Böhm, Scalings in homogenisation of reaction, diffusion and interfacial exchange in a two-phase medium, in: Proc. Equadiff-11 (in press)
[14] Applications of the homogenization method to flow and transport in porous media, Beijing, China, 8–26 August 1988 (X. Shutie, ed.), World Scientific (1992), pp. 167-222
Cited by Sources:
Comments - Policy