A special class of nonlinear porous materials with isotropic ‘sequentially laminated’ microstructures is found to reproduce exactly the hydrostatic behavior of ‘hollow sphere assemblages’. It is then argued that this result supports the conjecture that Gurson's approximate criterion for plastic porous materials, and its viscoplastic extension of Leblond et al. (1994), may actually yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity.
On montre qu'une classe spéciale des matériaux poreux non-linéaires avec des microstructures ‘séquentiellement stratifiées’ isotropes reproduit exactement le comportement hydrostatique des ‘assemblage des sphères composites’ de Hashin. On argumente que ce résultat conforte la conjecture suivant laquelle le critère de Gurson pour les matériaux poreux plastiques, et son extension viscoplastique due à Leblond et al. (1994), peuvent constituer des bornes supérieures rigoureuses pour le seuil plastique hydrostatique des matériaux poreux contenant une distribution de porosité arbitraire mais macroscopiquement isotrope.
Accepted:
Published online:
Mots-clés : Milieux poreux, Homogénéisation, Comportement non linéaire
Martín I. Idiart 1, 2
@article{CRMECA_2007__335_7_363_0, author = {Mart{\'\i}n I. Idiart}, title = {Nonlinear sequential laminates reproducing hollow sphere assemblages}, journal = {Comptes Rendus. M\'ecanique}, pages = {363--368}, publisher = {Elsevier}, volume = {335}, number = {7}, year = {2007}, doi = {10.1016/j.crme.2007.04.003}, language = {en}, }
Martín I. Idiart. Nonlinear sequential laminates reproducing hollow sphere assemblages. Comptes Rendus. Mécanique, Volume 335 (2007) no. 7, pp. 363-368. doi : 10.1016/j.crme.2007.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.04.003/
[1] Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, J. Engrg. Mat. Tech., Volume 99 (1977), pp. 2-15
[2] Exact results and approximate models for porous viscoplastic solids, Int. J. Plasticity, Volume 10 (1994), pp. 213-235
[3] Endommagement et changement d'échelle (M. Bornert; T. Bretheau; P. Gilormini, eds.), Homogénéisation en mécanique des matériaux, vol. 2, Hermes Science, 2001, pp. 91-146
[4] J.-P. Leblond, private communication (2006)
[5] On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials, J. Mech. Phys. Solids, Volume 55 (2007), pp. 842-878
[6] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[7] On methods for bounding the overall properties of nonlinear composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 73-86
[8] On bounds for the overall potential of power law materials containing voids with an arbitrary shape, Mech. Res. Commun., Volume 19 (1992), pp. 51-58
[9] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302
[10] The Theory of Composites, Cambridge Univ. Press, Cambridge, UK, 2002
[11] On the ductility of laminated materials, Int. J. Solids Struct., Volume 29 (1992), pp. 2329-2353
[12] Bounds and estimates for the properties of nonlinear heterogeneous systems, Philos. Trans. Roy. Soc. London A, Volume 340 (1992), pp. 531-567
[13] Transversely isotropic sequentially laminated composites in finite elasticity, J. Mech. Phys. Solids, Volume 53 (2005), pp. 1334-1361
[14] M.I. Idiart, Macroscopic behavior and field statistics in viscoplastic composites, Ph.D. Thesis, University of Pennsylvania, USA, 2006
[15] Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis, Int. J. Solids Struct., Volume 42 (2005), pp. 517-538
Cited by Sources:
Comments - Policy