This Note is dedicated to the numerical treatment of the ill-posed Cauchy–Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an ‘interfacial’ equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments.
Cette Note concerne le traitement numérique du problème de Cauchy–Helmholtz. On « emprunte » les outils de type décomposition de domaines pour exprimer le problème de complétion de données en terme d'équation « d'interface ». Cette équation est résolue via un algorithme de Richardson préconditionné avec relaxation dynamique. L'efficacité de la méthode est illustrée par quelques expériences numériques.
Accepted:
Published online:
Mot clés : Complétion de données, Problème inverse, Problème de Cauchy–Helmholtz, Operateur d'interface, Opérateur de Steklov–Poincaré
Riadh Ben Fatma 1; Mejdi Azaïez 2; Amel Ben Abda 1; Nabil Gmati 1
@article{CRMECA_2007__335_12_787_0, author = {Riadh Ben Fatma and Mejdi Aza{\"\i}ez and Amel Ben Abda and Nabil Gmati}, title = {Missing boundary data recovering for the {Helmholtz} problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {787--792}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2007}, doi = {10.1016/j.crme.2007.10.006}, language = {en}, }
TY - JOUR AU - Riadh Ben Fatma AU - Mejdi Azaïez AU - Amel Ben Abda AU - Nabil Gmati TI - Missing boundary data recovering for the Helmholtz problem JO - Comptes Rendus. Mécanique PY - 2007 SP - 787 EP - 792 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2007.10.006 LA - en ID - CRMECA_2007__335_12_787_0 ER -
Riadh Ben Fatma; Mejdi Azaïez; Amel Ben Abda; Nabil Gmati. Missing boundary data recovering for the Helmholtz problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 787-792. doi : 10.1016/j.crme.2007.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.006/
[1] Lectures on Cauchy's Problem in Linear Partial Differential Equation, Dover, New York, 1953
[2] On Cauchy's problem II: completion, regularization and approximation, Inverse Problems, Volume 22 (2006), pp. 1307-1336
[3] On Cauchy's problem I, variational Steklov Poincaré's theory, Inverse Problems, Volume 22 (2006) no. 4, pp. 1307-1336
[4] Solving Cauchy problems by minimizing an energy-like functional, Inverse Problems, Volume 22 (2006), pp. 115-133
[5] Revisiting the Dirichlet-to-Neumann solver for data completion and application to some inverse problems, Int. J. Appl. Math. Mech., Volume 1 (2005), pp. 106-121
[6] Recovery of cracks from incomplete boundary data, Inverse Problems Engrg., Volume 10 (2002) no. 4, pp. 377-392
[7] A. Quarteroni, Domain decomposition method for the numerical solution of partial differential equations, Research Report UMSI 90/246, University of Minnesota Supercomputer Institute, 1990
[8] Documentation MELINA http://perso.univ-rennes1.fr/daniel.martin/melina/ (ENSTA, mai 2000)
[9] An iterative method for solving the Cauchy problem for elliptic equations, Comput. Meth. Math. Phys., Volume 31 (1991), pp. 45-52
[10] Approximate solution of a Cauchy problem for the Helmholtz equation, Inverse Problems, Volume 22 (2006), pp. 975-989
[11] Numerical method for solving a class of nonlinear elliptic inverse problems, Comput. Appl. Math., Volume 162 (2004), pp. 165-181
Cited by Sources:
Comments - Policy