Comptes Rendus
Missing boundary data recovering for the Helmholtz problem
Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 787-792.

This Note is dedicated to the numerical treatment of the ill-posed Cauchy–Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an ‘interfacial’ equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments.

Cette Note concerne le traitement numérique du problème de Cauchy–Helmholtz. On « emprunte » les outils de type décomposition de domaines pour exprimer le problème de complétion de données en terme d'équation « d'interface ». Cette équation est résolue via un algorithme de Richardson préconditionné avec relaxation dynamique. L'efficacité de la méthode est illustrée par quelques expériences numériques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2007.10.006
Keywords: Data completion, Inverse problem, Cauchy–Helmholtz problem, Interface operator, Steklov–Poincaré operator
Mot clés : Complétion de données, Problème inverse, Problème de Cauchy–Helmholtz, Operateur d'interface, Opérateur de Steklov–Poincaré

Riadh Ben Fatma 1; Mejdi Azaïez 2; Amel Ben Abda 1; Nabil Gmati 1

1 LAMSIN, École nationale d'ingénieurs de Tunis, B.P. 37, 1002, Le Belvédère, Tunisia
2 TREFLE (UMR CNRS 8508), ENSCPB, 33607 Pessac, France
@article{CRMECA_2007__335_12_787_0,
     author = {Riadh Ben Fatma and Mejdi Aza{\"\i}ez and Amel Ben Abda and Nabil Gmati},
     title = {Missing boundary data recovering for the {Helmholtz} problem},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {787--792},
     publisher = {Elsevier},
     volume = {335},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crme.2007.10.006},
     language = {en},
}
TY  - JOUR
AU  - Riadh Ben Fatma
AU  - Mejdi Azaïez
AU  - Amel Ben Abda
AU  - Nabil Gmati
TI  - Missing boundary data recovering for the Helmholtz problem
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 787
EP  - 792
VL  - 335
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2007.10.006
LA  - en
ID  - CRMECA_2007__335_12_787_0
ER  - 
%0 Journal Article
%A Riadh Ben Fatma
%A Mejdi Azaïez
%A Amel Ben Abda
%A Nabil Gmati
%T Missing boundary data recovering for the Helmholtz problem
%J Comptes Rendus. Mécanique
%D 2007
%P 787-792
%V 335
%N 12
%I Elsevier
%R 10.1016/j.crme.2007.10.006
%G en
%F CRMECA_2007__335_12_787_0
Riadh Ben Fatma; Mejdi Azaïez; Amel Ben Abda; Nabil Gmati. Missing boundary data recovering for the Helmholtz problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 787-792. doi : 10.1016/j.crme.2007.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.006/

[1] J. Hadamard Lectures on Cauchy's Problem in Linear Partial Differential Equation, Dover, New York, 1953

[2] M. Azaïez; F. Ben Belgacem; H. El Fekih On Cauchy's problem II: completion, regularization and approximation, Inverse Problems, Volume 22 (2006), pp. 1307-1336

[3] F. Ben Belgacem; H. Elfekih On Cauchy's problem I, variational Steklov Poincaré's theory, Inverse Problems, Volume 22 (2006) no. 4, pp. 1307-1336

[4] S. Andrieux; T.N. Baranger; A. Ben Abda Solving Cauchy problems by minimizing an energy-like functional, Inverse Problems, Volume 22 (2006), pp. 115-133

[5] M. Azaïez; A. Ben Abda; J. Ben Abdallah Revisiting the Dirichlet-to-Neumann solver for data completion and application to some inverse problems, Int. J. Appl. Math. Mech., Volume 1 (2005), pp. 106-121

[6] A. Cimetière; F. Delvare; M. Jaoua; M. Kallel; F. Pons Recovery of cracks from incomplete boundary data, Inverse Problems Engrg., Volume 10 (2002) no. 4, pp. 377-392

[7] A. Quarteroni, Domain decomposition method for the numerical solution of partial differential equations, Research Report UMSI 90/246, University of Minnesota Supercomputer Institute, 1990

[8] D. Martin Documentation MELINA http://perso.univ-rennes1.fr/daniel.martin/melina/ (ENSTA, mai 2000)

[9] V.A. Koslov; V.G. Maz'ya; A.V. Fomin An iterative method for solving the Cauchy problem for elliptic equations, Comput. Meth. Math. Phys., Volume 31 (1991), pp. 45-52

[10] T. Reginska; K. Reginski Approximate solution of a Cauchy problem for the Helmholtz equation, Inverse Problems, Volume 22 (2006), pp. 975-989

[11] M. Essaouini; A. Nachaoui; S. El Hajjia Numerical method for solving a class of nonlinear elliptic inverse problems, Comput. Appl. Math., Volume 162 (2004), pp. 165-181

Cited by Sources:

Comments - Policy