[Reconstruction des données pour le problème de Helmholtz]
Cette Note concerne le traitement numérique du problème de Cauchy–Helmholtz. On « emprunte » les outils de type décomposition de domaines pour exprimer le problème de complétion de données en terme d'équation « d'interface ». Cette équation est résolue via un algorithme de Richardson préconditionné avec relaxation dynamique. L'efficacité de la méthode est illustrée par quelques expériences numériques.
This Note is dedicated to the numerical treatment of the ill-posed Cauchy–Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an ‘interfacial’ equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments.
Accepté le :
Publié le :
Mots-clés : Complétion de données, Problème inverse, Problème de Cauchy–Helmholtz, Operateur d'interface, Opérateur de Steklov–Poincaré
Riadh Ben Fatma 1 ; Mejdi Azaïez 2 ; Amel Ben Abda 1 ; Nabil Gmati 1
@article{CRMECA_2007__335_12_787_0, author = {Riadh Ben Fatma and Mejdi Aza{\"\i}ez and Amel Ben Abda and Nabil Gmati}, title = {Missing boundary data recovering for the {Helmholtz} problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {787--792}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2007}, doi = {10.1016/j.crme.2007.10.006}, language = {en}, }
TY - JOUR AU - Riadh Ben Fatma AU - Mejdi Azaïez AU - Amel Ben Abda AU - Nabil Gmati TI - Missing boundary data recovering for the Helmholtz problem JO - Comptes Rendus. Mécanique PY - 2007 SP - 787 EP - 792 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2007.10.006 LA - en ID - CRMECA_2007__335_12_787_0 ER -
Riadh Ben Fatma; Mejdi Azaïez; Amel Ben Abda; Nabil Gmati. Missing boundary data recovering for the Helmholtz problem. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 787-792. doi : 10.1016/j.crme.2007.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.006/
[1] Lectures on Cauchy's Problem in Linear Partial Differential Equation, Dover, New York, 1953
[2] On Cauchy's problem II: completion, regularization and approximation, Inverse Problems, Volume 22 (2006), pp. 1307-1336
[3] On Cauchy's problem I, variational Steklov Poincaré's theory, Inverse Problems, Volume 22 (2006) no. 4, pp. 1307-1336
[4] Solving Cauchy problems by minimizing an energy-like functional, Inverse Problems, Volume 22 (2006), pp. 115-133
[5] Revisiting the Dirichlet-to-Neumann solver for data completion and application to some inverse problems, Int. J. Appl. Math. Mech., Volume 1 (2005), pp. 106-121
[6] Recovery of cracks from incomplete boundary data, Inverse Problems Engrg., Volume 10 (2002) no. 4, pp. 377-392
[7] A. Quarteroni, Domain decomposition method for the numerical solution of partial differential equations, Research Report UMSI 90/246, University of Minnesota Supercomputer Institute, 1990
[8] Documentation MELINA http://perso.univ-rennes1.fr/daniel.martin/melina/ (ENSTA, mai 2000)
[9] An iterative method for solving the Cauchy problem for elliptic equations, Comput. Meth. Math. Phys., Volume 31 (1991), pp. 45-52
[10] Approximate solution of a Cauchy problem for the Helmholtz equation, Inverse Problems, Volume 22 (2006), pp. 975-989
[11] Numerical method for solving a class of nonlinear elliptic inverse problems, Comput. Appl. Math., Volume 162 (2004), pp. 165-181
Cité par Sources :
Commentaires - Politique