A mathematical model conceived to simulate the mechanics of synchronous lateral excitation induced by pedestrians on footbridges is presented in this Note. The model is based on the mathematical and numerical decomposition of the coupled multiphysical non-linear system into two interacting subsystems: the Structure system, whose dynamics is described by the non-linear equation of motion, and the Crowd system, which is described by a first-order hydrodynamic model governed by the mass conservation equation. The model was applied to the simulation of a crowd event recorded on the T-bridge in Japan and results are commented on.
Un modèle mathématique conçu pour la simulation du phénomène de synchronisation forcée latérale d'une foule de piétons en marche sur une passerelle est présenté dans la présente étude. Le modèle consiste en la décomposition mathématique et numérique du système couplé nonlinéaire multi-physique en deux sous systèmes en interaction : le système Structure, décrit par des équations fondamentales nonlinéaires de la dynamique ; le système foule, qui est décrit par un modèle hydrodynamique du première ordre géré par l'équation de conservation de la masse. Le modèle est appliqué à la simulation de la foule traversant la passerelle du Toda Park au Japon.
Accepted:
Published online:
Mot clés : Systèmes dynamiques, Synchronisation, Interaction piétons–structure, Passerelles piétonnes
Fiammetta Venuti 1; Luca Bruno 1
@article{CRMECA_2007__335_12_739_0, author = {Fiammetta Venuti and Luca Bruno}, title = {The synchronous lateral excitation phenomenon: modelling framework and an application}, journal = {Comptes Rendus. M\'ecanique}, pages = {739--745}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2007}, doi = {10.1016/j.crme.2007.10.007}, language = {en}, }
TY - JOUR AU - Fiammetta Venuti AU - Luca Bruno TI - The synchronous lateral excitation phenomenon: modelling framework and an application JO - Comptes Rendus. Mécanique PY - 2007 SP - 739 EP - 745 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2007.10.007 LA - en ID - CRMECA_2007__335_12_739_0 ER -
Fiammetta Venuti; Luca Bruno. The synchronous lateral excitation phenomenon: modelling framework and an application. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 739-745. doi : 10.1016/j.crme.2007.10.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.007/
[1] Vibration serviceability of footbridges under human-induced excitation: a literature review, J. Sound Vibration, Volume 279 (2005), pp. 1-74
[2] The London Millennium Footbridge, The Structural Engineer, Volume 79 (2001) no. 22, pp. 17-33
[3] Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge, Earthquake Engrg. Struct. Dynam., Volume 22 (1993), pp. 741-758
[4] Lateral vibration of footbridges by synchronous walking, J. Construct. Steel Res., Volume 62 (2006), pp. 1148-1160
[5] F. Venuti, L. Bruno, N. Bellomo, Crowd–structure interaction: dynamics modelling and computational simulation, in: Proceedings Footbridge 2005, Venezia, 2005
[6] Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Math. Comput. Model., Volume 45 (2007), pp. 252-269
[7] Lateral vibration of footbridges under crowd-loading: Continuous crowd modeling approach, Key Engrg. Mater., Volume 347 (2007), pp. 685-690
[8] An interpretative model of the pedestrian fundamental relation, C. R. Mecanique, Volume 335 (2007), pp. 194-200
[9] Pedestrian lateral action on lively footbridges: a new load model, SEI Struct. Engrg. Internat., Volume 17 (2007) no. 3
[10] K.C. Park, C.A. Felippa, C. Farhat, Partitioned analysis of coupled mechanical systems, University of Colorado, March 1999, Report no. CU-CAS-99-06
[11] First order models and closure of mass conservation equations in the mathematical theory of vehicular traffic flow, C. R. Mecanique, Volume 333 (2005), pp. 843-851
[12] Verrkhersbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgangerverkhers, Strassenbau and Strassenverkherstechnik, Volume 22 (1963), pp. 36-40
[13] Pedestrian Planning and Design, Elevator World Inc., 1987
[14] S. Buchmueller, U. Weidmann, Parameters of pedestrians, pedestrian traffic and walking facilities, ETH Zürich, October 2006, Ivt Report no. 132
[15] Mathematical modeling of vehicular traffic: a discrete kinetic approach, Math. Mod. Meth. Appl. Sci., Volume 17 (2007), pp. 901-932
[16] ISO International Standardization Organization, Geneva, Switzerland, Bases for Design of Structures—Serviceability of Buildings Against Vibrations, 1992, ISO 10137
[17] Field measurement of lateral vibration on a pedestrian suspension bridge, The Structural Engineer, Volume 81 (2003) no. 22, pp. 22-26
[18] A.D. Pizzimenti, Analisi sperimentale dei meccanismi di eccitazione laterale delle passerelle ad opera dei pedoni, PhD thesis, Universitá degli Studi di Catania, Dottorato in Ingegneria delle Strutture XVII ciclo, 2005
[19] Multiple walking speed-frequency relations are predicted by constrained optimization, J. Theor. Biol., Volume 209 (2001), pp. 445-453
[20] Lateral vibration on a pedestrian cable-stayed bridge, Structural Engrg. Internat., Volume 12 (2002) no. 4, pp. 295-300
Cited by Sources:
Comments - Policy