Boundary integral equations are well suitable for the analysis of seismic waves propagation in unbounded domains. Formulations in elastodynamics are well developed. In contrast, for the dynamic analysis of viscoelastic media, there are very seldom formulations by boundary integral equations. In this Note, we propose a new and simple formulation of time harmonic viscoelasticity with the Zener model, which reduces to classical elastodynamics if a compatibility condition is satisfied by boundary conditions. Intermediate variables which satisfy the classical elastodynamic equations are introduced. It makes it possible to utilize existing numerical tools of time harmonic elastodynamics.
Les équations intégrales de frontière sont bien adaptées à l'étude de la propagation des ondes sismiques notamment pour les domaines non bornés. Les formulations pour l'élastodynamique sont très développées. Par contre, pour la dynamique des corps viscoélastiques modélisant le sol, peu de formulations par équations intégrales de frontière existent. On propose dans cette Note une nouvelle formulation simple de la viscoélasticité en domaine fréquentiel par un modèle de Zener qui se ramène à la formulation classique de l'élastodynamique, si les conditions à la frontière respectent une condition de compatibilité. Des variables intermédiaires qui respectent les équations de l'élastodynamique classique sont introduites. Il est alors possible de réutiliser les outils numériques existant pour l'élastodynamique harmonique.
Accepted:
Published online:
Mot clés : Mécanique des solides numérique, Viscoélasticité, Équations intégrales de frontière
Stéphanie Chaillat 1, 2; Huy Duong Bui 1, 3
@article{CRMECA_2007__335_12_746_0, author = {St\'ephanie Chaillat and Huy Duong Bui}, title = {Resolution of linear viscoelastic equations in the frequency domain using real {Helmholtz} boundary integral equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {746--750}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2007}, doi = {10.1016/j.crme.2007.10.005}, language = {en}, }
TY - JOUR AU - Stéphanie Chaillat AU - Huy Duong Bui TI - Resolution of linear viscoelastic equations in the frequency domain using real Helmholtz boundary integral equations JO - Comptes Rendus. Mécanique PY - 2007 SP - 746 EP - 750 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2007.10.005 LA - en ID - CRMECA_2007__335_12_746_0 ER -
%0 Journal Article %A Stéphanie Chaillat %A Huy Duong Bui %T Resolution of linear viscoelastic equations in the frequency domain using real Helmholtz boundary integral equations %J Comptes Rendus. Mécanique %D 2007 %P 746-750 %V 335 %N 12 %I Elsevier %R 10.1016/j.crme.2007.10.005 %G en %F CRMECA_2007__335_12_746_0
Stéphanie Chaillat; Huy Duong Bui. Resolution of linear viscoelastic equations in the frequency domain using real Helmholtz boundary integral equations. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 746-750. doi : 10.1016/j.crme.2007.10.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.005/
[1] Seismic site effects in deep alluvial basin: numerical analysis by boundary element method, Comput. Geotech., Volume 29 (2002), pp. 573-585
[2] Wave Propagation in Viscoelastic and Poroelastic Continua, Springer, 2001
[3] An application of the correspondence principle of linear viscoelasticity theory, SIAM J. Appl. Math., Volume 21 (1971), pp. 321-330
[4] Boundary element method applied to linear viscoelastic analysis, Appl. Math. Model., Volume 6 (1982), pp. 285-290
[5] Dynamics of viscoelastic solids treated by boundary element approaches in time domain, Eur. J. Mech. A/Solids, Volume 13 (1994), pp. 43-59
[6] Convolution quadrature and discretized operational calculus, I, Numer. Math., Volume 52 (1988), pp. 129-145
[7] A new visco- and elastodynamic time domain boundary element formulation, Comput. Mech., Volume 20 (1997), pp. 452-459
[8] A simple Kelvin and Boltzmann viscoelastic analysis of three-dimensional solids by boundary element method, Eng. Anal. Bound. Elements, Volume 27 (2003), pp. 885-895
[9] Boundary Elements in Dynamics, International Series on Computational Engineering, Computational Mechanics/Elsevier Applied Science, Southampton, London UK, 1993
[10] Viscoelasticity, Springer-Verlag, 1975
[11] Contact problem of rolling of a viscoelastic cylinder on a base of the same material, PMM, Volume 37 (1973), pp. 925-933
[12] Boundary Integral Equation Method for Solids and Fluids, Wiley, 1999
[13] A Fast Multipole Method formulation for 3D elastodynamics in the frequency domain, C. R. Mecanique, Volume 335 (2007) no. 11, pp. 714-719
Cited by Sources:
Comments - Policy