[Une approche théorique de la localisation de la déformation en minces couches planes dans les matériaux poreux ductiles]
Il est bien connu que la propagation de fissures dans les matériaux poreux ductiles s'effectue suivant deux mécanismes possibles : la coalescence des cavités et la formation de bandes de cisaillement. Le modèle homogénéisé classique de Gurson–Tvergaard–Needleman (GTN) pour ces matériaux contient une modélisation phénoménologique de la coalescence, mais pas de la formation de bandes de cisaillement assistée par la présence de microcavités, et ceci induit certains inconvénients. Afin de résoudre ces difficultés, cet article propose un modèle unifié de la coalescence des vides et de la formation de bandes de cisaillement dans les solides plastiques poreux, incluant les couplages possibles entre les deux phénomènes. Ces derniers sont considérés comme deux manifestations d'un même effet fondamental, à savoir la localisation de la déformation en minces couches planes, la seule différence résidant dans le mode de déformation. Le modèle est d'abord développé en faisant l'hypothèse d'une distribution périodique de cavités, puis validé par comparaison avec des simulations numériques micromécaniques fondées sur la même hypothèse, et finalement étendu au cas d'une distribution aléatoire de vides.
Propagation of cracks in ductile materials is well known to occur through two possible mechanisms: coalescence of cavities and formation of shear bands (‘void sheet mechanism’). The classical Gurson–Tvergaard–Needleman (GTN) homogenized model for such materials incorporates some phenomenological modelling of coalescence, but not of formation of shear bands assisted by the presence of microvoids, and this generates a number of shortcomings. In order to solve these difficulties, this paper presents a unified model of both coalescence and formation of shear bands in porous plastic solids, including the possible couplings between the two. Both phenomena are viewed as expressions of the same basic effect, namely strain localization within thin planar bands, the only difference being the mode of deformation. The model is first developed assuming a periodic distribution of cavities, then critically assessed through comparison with some micromechanical numerical simulations based on the same assumption, and finally extended to the case of a random distribution of voids.
Mots-clés : Endommagement ductile, Coalescence, Bandes de cisaillement
Jean-Baptiste Leblond 1 ; Gérard Mottet 2
@article{CRMECA_2008__336_1-2_176_0, author = {Jean-Baptiste Leblond and G\'erard Mottet}, title = {A theoretical approach of strain localization within thin planar bands in porous ductile materials}, journal = {Comptes Rendus. M\'ecanique}, pages = {176--189}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.11.008}, language = {en}, }
TY - JOUR AU - Jean-Baptiste Leblond AU - Gérard Mottet TI - A theoretical approach of strain localization within thin planar bands in porous ductile materials JO - Comptes Rendus. Mécanique PY - 2008 SP - 176 EP - 189 VL - 336 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2007.11.008 LA - en ID - CRMECA_2008__336_1-2_176_0 ER -
%0 Journal Article %A Jean-Baptiste Leblond %A Gérard Mottet %T A theoretical approach of strain localization within thin planar bands in porous ductile materials %J Comptes Rendus. Mécanique %D 2008 %P 176-189 %V 336 %N 1-2 %I Elsevier %R 10.1016/j.crme.2007.11.008 %G en %F CRMECA_2008__336_1-2_176_0
Jean-Baptiste Leblond; Gérard Mottet. A theoretical approach of strain localization within thin planar bands in porous ductile materials. Comptes Rendus. Mécanique, Duality, inverse problems and nonlinear problems in solid mechanics, Volume 336 (2008) no. 1-2, pp. 176-189. doi : 10.1016/j.crme.2007.11.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.008/
[1] Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media, ASME J. Engrg. Mater. Technol., Volume 99 (1977), pp. 2-15
[2] Analysis of cup-cone fracture in a round tensile bar, Acta Metallurgica, Volume 32 (1984), pp. 157-169
[3] J. Devaux, J.B. Leblond, G. Mottet, G. Perrin, Some new applications of damage models for ductile metals, in: Application of Local Fracture/Damage Models to Engineering Problems, Proceedings of the 1992 ASME Summer Mechanics Meeting, Tempe (USA), American Society of Mechanical Engineers
[4] Modelling of crack growth in round bars and plane strain specimens, Int. J. Solids Structures, Volume 38 (2001), pp. 8259-8284
[5] J. Kyong Lak, Rupture en mode mixte I + II de l'acier inoxydable austénitique 316L, PhD Thesis, Ecole Centrale de Paris, France, 1993
[6] J. Devaux, Etude de la rupture en mode mixte, action 2004—Application à la rupture d'un barreau de flexion 4 points, Note Interne ESI Group n° F/LE/04.5877/A, 2004
[7] M. Gologanu, Etude de quelques problèmes de rupture ductile des métaux, PhD thesis, Université Pierre et Marie Curie (Paris VI), France, 1997
[8] Theoretical models for void coalescence in porous ductile solids—I: Coalescence “in layers”, Int. J. Solids Structures, Volume 38 (2001), pp. 5581-5594
[9] Void growth and coalescence in porous plastic solids, Int. J. Solids Structures, Volume 24 (1988), pp. 835-853
[10] The continuum theory of plasticity on the macroscale and the microscale, J. Materials, Volume 1 (1966), pp. 873-910
[11] Second order estimates for nonlinear isotropic composites with spherical pores and rigid particles, C. R. Mécanique, Volume 333 (2005), pp. 147-154
[12] Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fracture, Volume 17 (1981), pp. 389-407
[13] G. Perrin, Contribution à l'étude théorique et numérique de la rupture ductile des métaux, PhD thesis, Ecole Polytechnique, Palaiseau, France, 1992
[14] Analyzing ductile fracture using dual dilational constitutive equations, Fatigue Fract. Engrg. Mater. Struct., Volume 17 (1994), pp. 695-707
[15] An extended model for void growth and coalescence, J. Mech. Phys. Solids, Volume 48 (2000), pp. 2467-2512
[16] Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, Volume 50 (2002), pp. 1331-1362
[17] Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metallurgica, Volume 33 (1985), pp. 1079-1085
[18] A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metallurgica, Volume 33 (1985), pp. 1087-1095
[19] T. Pardoen, F. Scheyvaerts, private communication (2006)
[20] P. Suquet, Plasticité et homogénéisation, PhD thesis, Université Pierre et Marie Curie (Paris VI), France, 1982
[21] Analytical study of a hollow sphere made of porous plastic material and subjected to hydrostatic tension—Application to some problems in ductile fracture of metals, Int. J. Plasticity, Volume 6 (1990), pp. 677-699
[22] On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Meth. Engrg., Volume 11 (1977), pp. 817-832
- Strain localization in rate sensitive porous ductile materials, Journal of the Mechanics and Physics of Solids, Volume 195 (2025), p. 105957 | DOI:10.1016/j.jmps.2024.105957
- Unhomogeneous yielding of porous materials — Evolution equations, Journal of the Mechanics and Physics of Solids, Volume 196 (2025), p. 105973 | DOI:10.1016/j.jmps.2024.105973
- Surrogate modeling by multifidelity cokriging for the ductile failure of random microstructures, Computational Mechanics, Volume 74 (2024) no. 2, pp. 225-245 | DOI:10.1007/s00466-023-02430-8 | Zbl:7912458
- An analysis of failure in shear versus tension, European Journal of Mechanics. A. Solids, Volume 104 (2024), p. 20 (Id/No 105074) | DOI:10.1016/j.euromechsol.2023.105074 | Zbl:7849922
- A micro-mechanics based extension of the GTN continuum model accounting for random void distributions, European Journal of Mechanics. A. Solids, Volume 104 (2024), p. 8 (Id/No 105123) | DOI:10.1016/j.euromechsol.2023.105123 | Zbl:1540.74006
- Porous plasticity modeling of local necking in sheet metals, International Journal of Fracture, Volume 247 (2024) no. 2, p. 135 | DOI:10.1007/s10704-024-00764-9
- Criterion for unhomogeneous yielding of porous materials, Journal of the Mechanics and Physics of Solids, Volume 192 (2024), p. 105804 | DOI:10.1016/j.jmps.2024.105804
- Use of modified Madou–Leblond model to predict crack initiation in low alloy steel specimens with different stress states, Engineering Fracture Mechanics, Volume 277 (2023), p. 108946 | DOI:10.1016/j.engfracmech.2022.108946
- Predicting porosity distribution effects on the orientation induced plastic anisotropy of ductile solids: A crystal plasticity investigation, International Journal of Plasticity, Volume 171 (2023), p. 103781 | DOI:10.1016/j.ijplas.2023.103781
- On the structure of poroplastic constitutive relations, Journal of the Mechanics and Physics of Solids, Volume 178 (2023), p. 105344 | DOI:10.1016/j.jmps.2023.105344
- Voids Development in Metals: Numerical Modelling, Materials, Volume 16 (2023) no. 14, p. 4998 | DOI:10.3390/ma16144998
- A Mechanism-Based Constitutive Model of Failure under Combined Tension and Shear, SSRN Electronic Journal (2023) | DOI:10.2139/ssrn.4652115
- Unit cell calculations under fully characterized stress states, International Journal of Plasticity, Volume 156 (2022), p. 103358 | DOI:10.1016/j.ijplas.2022.103358
- Ductile Fracture in Plane Stress, Journal of Applied Mechanics, Volume 89 (2022) no. 1 | DOI:10.1115/1.4052106
- Ductile failure predictions using micromechanically-based computational models, Journal of the Mechanics and Physics of Solids, Volume 164 (2022), p. 104873 | DOI:10.1016/j.jmps.2022.104873
- Strain localization analysis in materials containing randomly distributed voids: Competition between extension and shear failure modes, Journal of the Mechanics and Physics of Solids, Volume 166 (2022), p. 104933 | DOI:10.1016/j.jmps.2022.104933
- Effect of shear localisation on yield surface for porous metals containing ellipsoidal voids, Engineering Fracture Mechanics, Volume 255 (2021), p. 107932 | DOI:10.1016/j.engfracmech.2021.107932
- Size effect on void coalescence under intense shear, European Journal of Mechanics. A. Solids, Volume 90 (2021), p. 9 (Id/No 104329) | DOI:10.1016/j.euromechsol.2021.104329 | Zbl:1484.74070
- Ductile fracture of materials with randomly distributed voids, International Journal of Fracture (2021) | DOI:10.1007/s10704-021-00562-7
- Bibliography, Ductile Fracture in Metal Forming (2020), p. 259 | DOI:10.1016/b978-0-12-814772-6.00013-8
- Evolution of shape and size of voids under shear dominated loading conditions in ductile materials, Engineering Fracture Mechanics, Volume 236 (2020), p. 107208 | DOI:10.1016/j.engfracmech.2020.107208
- A micromechanics-based non-local damage to crack transition framework for porous elastoplastic solids, International Journal of Plasticity, Volume 127 (2020), p. 102631 | DOI:10.1016/j.ijplas.2019.11.010
- Ductile failure simulations using a multi-surface coupled damage-plasticity model, International Journal of Plasticity, Volume 118 (2019), p. 190 | DOI:10.1016/j.ijplas.2019.02.007
- Micromechanical modeling and simulation of the loading path dependence of ductile failure by void growth to coalescence, International Journal of Solids and Structures, Volume 166 (2019), p. 135 | DOI:10.1016/j.ijsolstr.2019.02.015
- Computational investigation into the role of localisation on yield of a porous ductile solid, Journal of the Mechanics and Physics of Solids, Volume 130 (2019), pp. 141-164 | DOI:10.1016/j.jmps.2019.06.001 | Zbl:1452.74035
- A mechanism of failure in shear bands, Extreme Mechanics Letters, Volume 23 (2018), p. 67 | DOI:10.1016/j.eml.2018.06.008
- Limiting Internal Short-Circuit Damage by Electrode Partition for Impact-Tolerant Li-Ion Batteries, Joule, Volume 2 (2018) no. 1, p. 155 | DOI:10.1016/j.joule.2017.11.003
- Void-sheet analysis on macroscopic strain localization and void coalescence, Journal of the Mechanics and Physics of Solids, Volume 118 (2018), p. 172 | DOI:10.1016/j.jmps.2018.05.002
- Prediction of shear-dominated ductile fracture in a butterfly specimen using a model of plastic porous solids including void shape effects, European Journal of Mechanics. A. Solids, Volume 61 (2017), pp. 433-442 | DOI:10.1016/j.euromechsol.2016.10.014 | Zbl:1406.74200
- Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings, International Journal of Plasticity, Volume 91 (2017), p. 160 | DOI:10.1016/j.ijplas.2017.02.011
- Crack tip flipping under mode I tearing: Investigated by X-ray tomography, International Journal of Solids and Structures, Volume 118-119 (2017), p. 119 | DOI:10.1016/j.ijsolstr.2017.04.014
- An evolution model for elliptic-cylindrical void in viscous materials considering the evolvements of void shape and orientation, Mechanics of Materials, Volume 112 (2017), p. 101 | DOI:10.1016/j.mechmat.2017.06.002
- Predicting ductile fracture in ferrous materials during tensile tests using an ellipsoidal void model, Mechanics of Materials, Volume 113 (2017), p. 24 | DOI:10.1016/j.mechmat.2017.07.010
- Failure of metals I: Brittle and ductile fracture, Acta Materialia, Volume 107 (2016), p. 424 | DOI:10.1016/j.actamat.2015.12.034
- Ductile failure modeling, International Journal of Fracture, Volume 201 (2016) no. 1, p. 29 | DOI:10.1007/s10704-016-0142-6
- A criterion for void coalescence in anisotropic ductile materials, International Journal of Plasticity, Volume 82 (2016), p. 159 | DOI:10.1016/j.ijplas.2016.03.003
- Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings, Journal of the Mechanics and Physics of Solids, Volume 94 (2016), p. 148 | DOI:10.1016/j.jmps.2016.04.032
- Effects of void band orientation and crystallographic anisotropy on void growth and coalescence, Journal of the Mechanics and Physics of Solids, Volume 95 (2016), p. 270 | DOI:10.1016/j.jmps.2016.06.003
- A unified criterion for the growth and coalescence of microvoids, Journal of the Mechanics and Physics of Solids, Volume 97 (2016), p. 19 | DOI:10.1016/j.jmps.2016.01.013
- Advanced Models for the Prediction of Forming Limit Curves, Multiscale Modelling in Sheet Metal Forming (2016), p. 205 | DOI:10.1007/978-3-319-44070-5_5
- Micromechanical-Based Models for Describing Damage of Ferritic Steels, Recent Trends in Fracture and Damage Mechanics (2016), p. 353 | DOI:10.1007/978-3-319-21467-2_16
- A micromechanical model for the dynamic behavior of porous media in the void coalescence stage, International Journal of Solids and Structures, Volume 71 (2015), p. 1 | DOI:10.1016/j.ijsolstr.2015.05.003
- Effect of initial void shape on ductile failure in a shear field, Mechanics of Materials, Volume 90 (2015), p. 2 | DOI:10.1016/j.mechmat.2014.11.001
- Modeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolution, International Journal of Plasticity, Volume 61 (2014), p. 94 | DOI:10.1016/j.ijplas.2014.05.001
- Representative volume element calculations under constant stress triaxiality, Lode parameter, and shear ratio, International Journal of Solids and Structures, Volume 51 (2014) no. 25-26, p. 4544 | DOI:10.1016/j.ijsolstr.2014.09.001
- Bifurcation into a localized mode from non-uniform periodic deformations around a periodic pattern of voids, Journal of the Mechanics and Physics of Solids, Volume 69 (2014), p. 112 | DOI:10.1016/j.jmps.2014.05.002
- Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography, International Journal of Fracture, Volume 181 (2013) no. 1, p. 51 | DOI:10.1007/s10704-013-9820-9
- Void coalescence in a porous solid under dynamic loading conditions, International Journal of Fracture, Volume 173 (2012) no. 2, p. 203 | DOI:10.1007/s10704-012-9683-5
- Void evolution and coalescence in porous ductile materials in simple shear, International Journal of Fracture, Volume 177 (2012) no. 2, p. 129 | DOI:10.1007/s10704-012-9759-2
- Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D, International Journal of Fracture, Volume 177 (2012) no. 2, p. 97 | DOI:10.1007/s10704-012-9757-4
- Effect of stress-state and spacing on voids in a shear-field, International Journal of Solids and Structures, Volume 49 (2012) no. 22, p. 3047 | DOI:10.1016/j.ijsolstr.2012.06.008
- A criterion for the onset of void coalescence under combined tension and shear, Journal of the Mechanics and Physics of Solids, Volume 60 (2012) no. 7, p. 1363 | DOI:10.1016/j.jmps.2012.02.006
- Multiscale modelling of voided ductile solids with micro-inertia and application to dynamic crack propagation, Procedia IUTAM, Volume 3 (2012), p. 53 | DOI:10.1016/j.piutam.2012.03.004
- Plastic deformation modes in perforated sheets and their relation to yield and limit surfaces, International Journal of Plasticity, Volume 27 (2011) no. 10, pp. 1537-1559 | DOI:10.1016/j.ijplas.2010.10.004 | Zbl:1426.74090
- Void growth and coalescence in ductile solids with stage III and stage IV strain hardening, International Journal of Plasticity, Volume 27 (2011) no. 8, pp. 1203-1223 | DOI:10.1016/j.ijplas.2011.01.004 | Zbl:1426.74272
- Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence, International Journal of Solids and Structures, Volume 48 (2011) no. 6, pp. 925-938 | DOI:10.1016/j.ijsolstr.2010.11.028 | Zbl:1236.74229
- Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing, International Journal of Solids and Structures, Volume 48 (2011) no. 9, pp. 1255-1267 | DOI:10.1016/j.ijsolstr.2011.01.008 | Zbl:1236.74270
- The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, Journal of the Mechanics and Physics of Solids, Volume 59 (2011) no. 2, pp. 373-397 | DOI:10.1016/j.jmps.2010.10.003 | Zbl:1270.74191
- Ductile Fracture by Void Growth to Coalescence, Advances in Applied Mechanics Volume 44, Volume 44 (2010), p. 169 | DOI:10.1016/s0065-2156(10)44003-x
- Multiscale modeling of ductile failure in metallic alloys, Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, p. 326 | DOI:10.1016/j.crhy.2010.07.012
- A micromechanics based damage model for composite materials, International Journal of Plasticity, Volume 26 (2010) no. 4, pp. 549-569 | DOI:10.1016/j.ijplas.2009.09.002 | Zbl:1426.74277
- A constitutive model for plastically anisotropic solids with non-spherical voids, Journal of the Mechanics and Physics of Solids, Volume 58 (2010) no. 6, pp. 874-901 | DOI:10.1016/j.jmps.2010.03.007 | Zbl:1244.74030
- A finite-strain model for anisotropic viscoplastic porous media. I : Theory, European Journal of Mechanics. A. Solids, Volume 28 (2009) no. 3, pp. 387-401 | DOI:10.1016/j.euromechsol.2008.11.002 | Zbl:1158.74445
- A finite-strain model for anisotropic viscoplastic porous media. II : Applications, European Journal of Mechanics. A. Solids, Volume 28 (2009) no. 3, pp. 402-416 | DOI:10.1016/j.euromechsol.2008.11.003 | Zbl:1158.74446
- Behaviour of voids in a shear field, International Journal of Fracture, Volume 158 (2009) no. 1, pp. 41-49 | DOI:10.1007/s10704-009-9364-1 | Zbl:1294.74060
- Plasticity and fracture of martensitic boron steel under plane stress conditions, International Journal of Solids and Structures, Volume 46 (2009) no. 20, pp. 3535-3547 | DOI:10.1016/j.ijsolstr.2009.05.011 | Zbl:1183.74007
- Shear deformation of voids with contact modelled by internal pressure, International Journal of Mechanical Sciences, Volume 50 (2008) no. 10-11, p. 1459 | DOI:10.1016/j.ijmecsci.2008.08.007
Cité par 67 documents. Sources : Crossref, zbMATH
Commentaires - Politique