Comptes Rendus
Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids
[Modélisation théorique et simulation numérique de la coalescence des cavités dans les matériaux poreux ductiles viscoplastiques]
Comptes Rendus. Mécanique, Volume 333 (2005) no. 7, pp. 542-549.

On présente un modèle pour la coalescence des cavités dans les solides poreux ductiles viscoplastiques. Le volume représentatif élémentaire considéré est schématisé par un ‘sandwich’ comprenant une couche centrale poreuse entourée de deux couches externes saines, les tenseurs de contrainte et de taux de déformation étant considérés comme homogènes dans chaque couche. Les couches saines obéissent au modèle classique de Norton et la couche poreuse à un modèle homogénéisé spécifique pour les matériaux poreux viscoplastiques prenant en compte la forme des cavités. Un élément important est la description de l'évolution particulière de cette forme pendant la coalescence. Les prédictions du modèle sont comparées avec succès aux résultats de simulations micromécaniques par éléments finis.

One presents a model for coalescence of cavities in porous ductile viscoplastic solids. The representative volume element considered is schematized as a ‘sandwich’ consisting of a central porous layer surrounded by two external sound layers, the stress and strain rate tensors being considered as homogeneous in each layer. The sound layers obey the classical Norton model and the porous one some specific homogenized model for porous viscoplastic solids accounting for void shape. An important feature is the description of the peculiar evolution of this shape during coalescence. The model predictions are successfully compared to the results of some finite element micromechanical simulations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2005.06.009
Keywords: Porous media, Coalescence of cavities, Porous viscoplastic materials, Model ‘in layers’, Micromechanical numerical simulations
Mot clés : Milieux poreux, Coalescence de cavités, Matériaux viscoplastiques poreux, Modèle « en couches », Simulations numériques micromécaniques
Laïla Flandi 1 ; Jean-Baptiste Leblond 1

1 LMM, Université Paris VI, tour 65-55, 4, place Jussieu, 75252 Paris Cedex 05, France
@article{CRMECA_2005__333_7_542_0,
     author = {La{\"\i}la Flandi and Jean-Baptiste Leblond},
     title = {Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {542--549},
     publisher = {Elsevier},
     volume = {333},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crme.2005.06.009},
     language = {en},
}
TY  - JOUR
AU  - Laïla Flandi
AU  - Jean-Baptiste Leblond
TI  - Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 542
EP  - 549
VL  - 333
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2005.06.009
LA  - en
ID  - CRMECA_2005__333_7_542_0
ER  - 
%0 Journal Article
%A Laïla Flandi
%A Jean-Baptiste Leblond
%T Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids
%J Comptes Rendus. Mécanique
%D 2005
%P 542-549
%V 333
%N 7
%I Elsevier
%R 10.1016/j.crme.2005.06.009
%G en
%F CRMECA_2005__333_7_542_0
Laïla Flandi; Jean-Baptiste Leblond. Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids. Comptes Rendus. Mécanique, Volume 333 (2005) no. 7, pp. 542-549. doi : 10.1016/j.crme.2005.06.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.06.009/

[1] J. Koplik; A. Needleman Void growth and coalescence in porous plastic solids, Int. J. Solids Structures, Volume 24 (1988), pp. 835-853

[2] W. Brocks; D.Z. Sun; A. Honig Verification of the transferability of micromechanical parameters by cell model calculations with viscoplastic materials, Int. J. Plasticity, Volume 11 (1995), pp. 971-989

[3] A. Needleman; V. Tvergaard; E. van der Giessen Evolution of void shape and size in creeping solids, Int. J. Damage Mech., Volume 4 (1995), pp. 134-152

[4] C.T. Herakovich; S.C. Baxter Influence of pore geometry on the effective response of porous media, J. Mater. Sci., Volume 34 (1999), pp. 1595-1609

[5] R. Mohan; F.W. Brust On void growth in elastic-nonlinear viscous solids under creep and cyclic creep conditions, ASME J. Engrg. Mater. Technol., Volume 122 (2000), pp. 283-293

[6] M. Garajeu; J.C. Michel; P. Suquet A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Engrg., Volume 183 (2000), pp. 223-246

[7] H. Klöcker; V. Tvergaard Void growth and coalescence in metals deformed at elevated temperature, Int. J. Fracture, Volume 106 (2000), pp. 259-276

[8] H. Klöcker; V. Tvergaard Growth and coalescence of non-spherical voids in metals deformed at elevated temperature, Int. J. Mech. Sci., Volume 45 (2003), pp. 1283-1308

[9] P.F. Thomason Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall., Volume 33 (1985), pp. 1079-1085

[10] P.F. Thomason A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metall., Volume 33 (1985), pp. 1087-1095

[11] T. Pardoen; J.W. Hutchinson An extended model for void growth and coalescence, J. Mech. Phys. Solids, Volume 48 (2000), pp. 2467-2512

[12] A. Benzerga Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, Volume 50 (2002), pp. 1331-1362

[13] M. Gologanu; J.B. Leblond; G. Perrin; J. Devaux Recent extensions of Gurson's model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, Springer, 1997, pp. 61-130

[14] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media, ASME J. Engrg. Mater. Technol., Volume 99 (1977), pp. 2-15

[15] G. Perrin, Contribution à l'étude théorique et numérique de la rupture ductile des métaux, Ph.D. Thesis, École Polytechnique, Palaiseau, 1992

[16] M. Gologanu; J.B. Leblond; G. Perrin; J. Devaux Theoretical models for void coalescence in porous ductile solids. I. Coalescence “in layers”, Int. J. Solids Structures, Volume 38 (2001), pp. 5581-5594

[17] L. Flandi, Rupture ductile des matériaux viscoplastiques poreux avec effets de forme des cavités, Ph.D. Thesis, Université Pierre et Marie Curie (Paris VI), 2004

[18] L. Flandi, J.B. Leblond, A new model for porous nonlinear viscous solids incorporating void shape effects – I: Theory, Eur. J. Mech. A Solids, in press

[19] L. Flandi, J.B. Leblond, A new model for porous nonlinear viscous solids incorporating void shape effects – II: Numerical validation, Eur. J. Mech. A Solids, in press

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A theoretical approach of strain localization within thin planar bands in porous ductile materials

Jean-Baptiste Leblond; Gérard Mottet

C. R. Méca (2008)


Multiscale modeling of ductile failure in metallic alloys

Thomas Pardoen; Florence Scheyvaerts; Aude Simar; ...

C. R. Phys (2010)


An approximate yield criterion for anisotropic porous media

Shyam M. Keralavarma; A. Amine Benzerga

C. R. Méca (2008)