[Modélisation théorique et simulation numérique de la coalescence des cavités dans les matériaux poreux ductiles viscoplastiques]
On présente un modèle pour la coalescence des cavités dans les solides poreux ductiles viscoplastiques. Le volume représentatif élémentaire considéré est schématisé par un ‘sandwich’ comprenant une couche centrale poreuse entourée de deux couches externes saines, les tenseurs de contrainte et de taux de déformation étant considérés comme homogènes dans chaque couche. Les couches saines obéissent au modèle classique de Norton et la couche poreuse à un modèle homogénéisé spécifique pour les matériaux poreux viscoplastiques prenant en compte la forme des cavités. Un élément important est la description de l'évolution particulière de cette forme pendant la coalescence. Les prédictions du modèle sont comparées avec succès aux résultats de simulations micromécaniques par éléments finis.
One presents a model for coalescence of cavities in porous ductile viscoplastic solids. The representative volume element considered is schematized as a ‘sandwich’ consisting of a central porous layer surrounded by two external sound layers, the stress and strain rate tensors being considered as homogeneous in each layer. The sound layers obey the classical Norton model and the porous one some specific homogenized model for porous viscoplastic solids accounting for void shape. An important feature is the description of the peculiar evolution of this shape during coalescence. The model predictions are successfully compared to the results of some finite element micromechanical simulations.
Accepté le :
Publié le :
Mot clés : Milieux poreux, Coalescence de cavités, Matériaux viscoplastiques poreux, Modèle « en couches », Simulations numériques micromécaniques
Laïla Flandi 1 ; Jean-Baptiste Leblond 1
@article{CRMECA_2005__333_7_542_0, author = {La{\"\i}la Flandi and Jean-Baptiste Leblond}, title = {Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids}, journal = {Comptes Rendus. M\'ecanique}, pages = {542--549}, publisher = {Elsevier}, volume = {333}, number = {7}, year = {2005}, doi = {10.1016/j.crme.2005.06.009}, language = {en}, }
TY - JOUR AU - Laïla Flandi AU - Jean-Baptiste Leblond TI - Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids JO - Comptes Rendus. Mécanique PY - 2005 SP - 542 EP - 549 VL - 333 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2005.06.009 LA - en ID - CRMECA_2005__333_7_542_0 ER -
%0 Journal Article %A Laïla Flandi %A Jean-Baptiste Leblond %T Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids %J Comptes Rendus. Mécanique %D 2005 %P 542-549 %V 333 %N 7 %I Elsevier %R 10.1016/j.crme.2005.06.009 %G en %F CRMECA_2005__333_7_542_0
Laïla Flandi; Jean-Baptiste Leblond. Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids. Comptes Rendus. Mécanique, Volume 333 (2005) no. 7, pp. 542-549. doi : 10.1016/j.crme.2005.06.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.06.009/
[1] Void growth and coalescence in porous plastic solids, Int. J. Solids Structures, Volume 24 (1988), pp. 835-853
[2] Verification of the transferability of micromechanical parameters by cell model calculations with viscoplastic materials, Int. J. Plasticity, Volume 11 (1995), pp. 971-989
[3] Evolution of void shape and size in creeping solids, Int. J. Damage Mech., Volume 4 (1995), pp. 134-152
[4] Influence of pore geometry on the effective response of porous media, J. Mater. Sci., Volume 34 (1999), pp. 1595-1609
[5] On void growth in elastic-nonlinear viscous solids under creep and cyclic creep conditions, ASME J. Engrg. Mater. Technol., Volume 122 (2000), pp. 283-293
[6] A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Engrg., Volume 183 (2000), pp. 223-246
[7] Void growth and coalescence in metals deformed at elevated temperature, Int. J. Fracture, Volume 106 (2000), pp. 259-276
[8] Growth and coalescence of non-spherical voids in metals deformed at elevated temperature, Int. J. Mech. Sci., Volume 45 (2003), pp. 1283-1308
[9] Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall., Volume 33 (1985), pp. 1079-1085
[10] A three-dimensional model for ductile fracture by the growth and coalescence of microvoids, Acta Metall., Volume 33 (1985), pp. 1087-1095
[11] An extended model for void growth and coalescence, J. Mech. Phys. Solids, Volume 48 (2000), pp. 2467-2512
[12] Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, Volume 50 (2002), pp. 1331-1362
[13] Recent extensions of Gurson's model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, Springer, 1997, pp. 61-130
[14] Continuum theory of ductile rupture by void nucleation and growth. I. Yield criteria and flow rules for porous ductile media, ASME J. Engrg. Mater. Technol., Volume 99 (1977), pp. 2-15
[15] G. Perrin, Contribution à l'étude théorique et numérique de la rupture ductile des métaux, Ph.D. Thesis, École Polytechnique, Palaiseau, 1992
[16] Theoretical models for void coalescence in porous ductile solids. I. Coalescence “in layers”, Int. J. Solids Structures, Volume 38 (2001), pp. 5581-5594
[17] L. Flandi, Rupture ductile des matériaux viscoplastiques poreux avec effets de forme des cavités, Ph.D. Thesis, Université Pierre et Marie Curie (Paris VI), 2004
[18] L. Flandi, J.B. Leblond, A new model for porous nonlinear viscous solids incorporating void shape effects – I: Theory, Eur. J. Mech. A Solids, in press
[19] L. Flandi, J.B. Leblond, A new model for porous nonlinear viscous solids incorporating void shape effects – II: Numerical validation, Eur. J. Mech. A Solids, in press
Cité par Sources :
Commentaires - Politique