[Un exemple de mode quasi-piégé dans un guide d'ondes élastique faiblement non linéaire]
This note generalizes an earlier suggested simple example of a trapped mode in a linearly elastic waveguide. A semi-infinite string with a point end mass is considered in the presence of a weakly non-linear support. The effect of non-linearity involves small amplitude non-localized disturbances resulting in a slow time-decay of the vibration amplitude. The rate of the decay is evaluated along with the correction to the vibration phase using the method of multiple scales.
Cette note généralise un exemple simple de mode piégé dans un guide d'ondes élastique linéaire, suggéré précédemment. Une corde semi-infinie terminée par une masse ponctuelle est considérée en présence d'un support faiblement non linéaire. Les effets non linéaires entraînent des composantes de petites amplitudes non localisées, qui conduisent à une décroissance lente de l'amplitude de vibration au cours du temps. Le taux de décroissance temporelle ainsi que la correction de phase sont évalués à partir de la méthode des échelles multiples.
Accepté le :
Publié le :
Mots-clés : Systèmes dynamiques, Mode piégé, Faible non linéarité, Echelle multiple, Elasticité
Julius Kaplunov 1 ; Evgeniya Nolde 1
@article{CRMECA_2008__336_7_553_0, author = {Julius Kaplunov and Evgeniya Nolde}, title = {An example of a quasi-trapped mode in a weakly non-linear elastic waveguide}, journal = {Comptes Rendus. M\'ecanique}, pages = {553--558}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2008}, doi = {10.1016/j.crme.2008.04.005}, language = {en}, }
Julius Kaplunov; Evgeniya Nolde. An example of a quasi-trapped mode in a weakly non-linear elastic waveguide. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 553-558. doi : 10.1016/j.crme.2008.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.005/
[1] A simple example of a trapped mode in an unbounded waveguide, JASA, Volume 97 (1995), pp. 3898-3899
[2] Localized vibration in elastic structures with slowly varying thickness, Q. J. Mech. Appl. Math., Volume 58 (2005), pp. 645-664
[3] Trapped modes in bent elastic rods, Wave Motion, Volume 42 (2005), pp. 352-366
[4] Trapped modes for an elastic strip with perturbation of the material properties, Q. J. Mech. Appl. Math., Volume 59 (2006), pp. 399-418
[5] Trapped modes in topolographically varying elastic waveguides, Wave Motion, Volume 44 (2007), pp. 205-221
[6] Trapped waves in thin elastic plates, Wave Motion, Volume 45 (2007), pp. 3-15
[7] Localization of nonlinear waves in elastic bodies with inclusions, Acoustical Phys., Volume 50 (2004), pp. 420-426
[8] Perturbation Methods, John Wiley & Sons, New York, 1973
- The effect of small internal and dashpot damping on a trapped mode of a semi-infinite string, Journal of Sound and Vibration, Volume 595 (2025), p. 118749 | DOI:10.1016/j.jsv.2024.118749
- Dynamics of a weakly nonlinear string on an elastic foundation with a partly prescribed discrete spectrum, Nonlinear Dynamics, Volume 111 (2023) no. 6, p. 5221 | DOI:10.1007/s11071-022-08142-7
- Non-stationary oscillation of a string on the Winkler foundation subjected to a discrete mass–spring system non-uniformly moving at a sub-critical speed, Journal of Sound and Vibration, Volume 522 (2022), p. 116673 | DOI:10.1016/j.jsv.2021.116673
- An Infinite-Length System Possessing a Unique Trapped Mode Versus a Single Degree of Freedom System: A Comparative Study in the Case of Time-Varying Parameters, Dynamical Processes in Generalized Continua and Structures, Volume 103 (2019), p. 231 | DOI:10.1007/978-3-030-11665-1_13
- Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness, Journal of Sound and Vibration, Volume 440 (2019), p. 174 | DOI:10.1016/j.jsv.2018.10.016
- Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity, Nonlinear Dynamics, Volume 95 (2019) no. 4, p. 2995 | DOI:10.1007/s11071-018-04735-3
Cité par 6 documents. Sources : Crossref
Commentaires - Politique