Comptes Rendus
An example of a quasi-trapped mode in a weakly non-linear elastic waveguide
[Un exemple de mode quasi-piégé dans un guide d'ondes élastique faiblement non linéaire]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 553-558.

This note generalizes an earlier suggested simple example of a trapped mode in a linearly elastic waveguide. A semi-infinite string with a point end mass is considered in the presence of a weakly non-linear support. The effect of non-linearity involves small amplitude non-localized disturbances resulting in a slow time-decay of the vibration amplitude. The rate of the decay is evaluated along with the correction to the vibration phase using the method of multiple scales.

Cette note généralise un exemple simple de mode piégé dans un guide d'ondes élastique linéaire, suggéré précédemment. Une corde semi-infinie terminée par une masse ponctuelle est considérée en présence d'un support faiblement non linéaire. Les effets non linéaires entraînent des composantes de petites amplitudes non localisées, qui conduisent à une décroissance lente de l'amplitude de vibration au cours du temps. Le taux de décroissance temporelle ainsi que la correction de phase sont évalués à partir de la méthode des échelles multiples.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.04.005
Keywords: Dynamical systems, Trapped mode, Weak non-linearity, Multiple scale, Elasticity
Mots-clés : Systèmes dynamiques, Mode piégé, Faible non linéarité, Echelle multiple, Elasticité

Julius Kaplunov 1 ; Evgeniya Nolde 1

1 Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, UK
@article{CRMECA_2008__336_7_553_0,
     author = {Julius Kaplunov and Evgeniya Nolde},
     title = {An example of a quasi-trapped mode in a weakly non-linear elastic waveguide},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {553--558},
     publisher = {Elsevier},
     volume = {336},
     number = {7},
     year = {2008},
     doi = {10.1016/j.crme.2008.04.005},
     language = {en},
}
TY  - JOUR
AU  - Julius Kaplunov
AU  - Evgeniya Nolde
TI  - An example of a quasi-trapped mode in a weakly non-linear elastic waveguide
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 553
EP  - 558
VL  - 336
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2008.04.005
LA  - en
ID  - CRMECA_2008__336_7_553_0
ER  - 
%0 Journal Article
%A Julius Kaplunov
%A Evgeniya Nolde
%T An example of a quasi-trapped mode in a weakly non-linear elastic waveguide
%J Comptes Rendus. Mécanique
%D 2008
%P 553-558
%V 336
%N 7
%I Elsevier
%R 10.1016/j.crme.2008.04.005
%G en
%F CRMECA_2008__336_7_553_0
Julius Kaplunov; Evgeniya Nolde. An example of a quasi-trapped mode in a weakly non-linear elastic waveguide. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 553-558. doi : 10.1016/j.crme.2008.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.005/

[1] J.D. Kaplunov; S.V. Sorokin A simple example of a trapped mode in an unbounded waveguide, JASA, Volume 97 (1995), pp. 3898-3899

[2] J.D. Kaplunov; G.A. Rogerson; P.E. Tovstik Localized vibration in elastic structures with slowly varying thickness, Q. J. Mech. Appl. Math., Volume 58 (2005), pp. 645-664

[3] D. Gridin; A.T.I. Adamou; R.V. Craster Trapped modes in bent elastic rods, Wave Motion, Volume 42 (2005), pp. 352-366

[4] C. Förster; T. Weidl Trapped modes for an elastic strip with perturbation of the material properties, Q. J. Mech. Appl. Math., Volume 59 (2006), pp. 399-418

[5] J. Postnova; R.V. Craster Trapped modes in topolographically varying elastic waveguides, Wave Motion, Volume 44 (2007), pp. 205-221

[6] R. Porter Trapped waves in thin elastic plates, Wave Motion, Volume 45 (2007), pp. 3-15

[7] D.A. Indeitsev; E.V. Osipova Localization of nonlinear waves in elastic bodies with inclusions, Acoustical Phys., Volume 50 (2004), pp. 420-426

[8] A.H. Nayfeh Perturbation Methods, John Wiley & Sons, New York, 1973

  • A.K. Abramian; S.A. Vakulenko; W.T. van Horssen; A. Jikhareva The effect of small internal and dashpot damping on a trapped mode of a semi-infinite string, Journal of Sound and Vibration, Volume 595 (2025), p. 118749 | DOI:10.1016/j.jsv.2024.118749
  • Andrei K. Abramian; Sergei A. Vakulenko; Wim T. van Horssen Dynamics of a weakly nonlinear string on an elastic foundation with a partly prescribed discrete spectrum, Nonlinear Dynamics, Volume 111 (2023) no. 6, p. 5221 | DOI:10.1007/s11071-022-08142-7
  • Serge N. Gavrilov; Ekaterina V. Shishkina; Ilya O. Poroshin Non-stationary oscillation of a string on the Winkler foundation subjected to a discrete mass–spring system non-uniformly moving at a sub-critical speed, Journal of Sound and Vibration, Volume 522 (2022), p. 116673 | DOI:10.1016/j.jsv.2021.116673
  • S. N. Gavrilov; E. V. Shishkina; Yu. A. Mochalova An Infinite-Length System Possessing a Unique Trapped Mode Versus a Single Degree of Freedom System: A Comparative Study in the Case of Time-Varying Parameters, Dynamical Processes in Generalized Continua and Structures, Volume 103 (2019), p. 231 | DOI:10.1007/978-3-030-11665-1_13
  • E.V. Shishkina; S.N. Gavrilov; Yu.A. Mochalova Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness, Journal of Sound and Vibration, Volume 440 (2019), p. 174 | DOI:10.1016/j.jsv.2018.10.016
  • S. N. Gavrilov; E. V. Shishkina; Yu. A. Mochalova Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity, Nonlinear Dynamics, Volume 95 (2019) no. 4, p. 2995 | DOI:10.1007/s11071-018-04735-3

Cité par 6 documents. Sources : Crossref

Commentaires - Politique