This note generalizes an earlier suggested simple example of a trapped mode in a linearly elastic waveguide. A semi-infinite string with a point end mass is considered in the presence of a weakly non-linear support. The effect of non-linearity involves small amplitude non-localized disturbances resulting in a slow time-decay of the vibration amplitude. The rate of the decay is evaluated along with the correction to the vibration phase using the method of multiple scales.
Cette note généralise un exemple simple de mode piégé dans un guide d'ondes élastique linéaire, suggéré précédemment. Une corde semi-infinie terminée par une masse ponctuelle est considérée en présence d'un support faiblement non linéaire. Les effets non linéaires entraînent des composantes de petites amplitudes non localisées, qui conduisent à une décroissance lente de l'amplitude de vibration au cours du temps. Le taux de décroissance temporelle ainsi que la correction de phase sont évalués à partir de la méthode des échelles multiples.
Accepted:
Published online:
Mots-clés : Systèmes dynamiques, Mode piégé, Faible non linéarité, Echelle multiple, Elasticité
Julius Kaplunov 1; Evgeniya Nolde 1
@article{CRMECA_2008__336_7_553_0, author = {Julius Kaplunov and Evgeniya Nolde}, title = {An example of a quasi-trapped mode in a weakly non-linear elastic waveguide}, journal = {Comptes Rendus. M\'ecanique}, pages = {553--558}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2008}, doi = {10.1016/j.crme.2008.04.005}, language = {en}, }
Julius Kaplunov; Evgeniya Nolde. An example of a quasi-trapped mode in a weakly non-linear elastic waveguide. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 553-558. doi : 10.1016/j.crme.2008.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.005/
[1] A simple example of a trapped mode in an unbounded waveguide, JASA, Volume 97 (1995), pp. 3898-3899
[2] Localized vibration in elastic structures with slowly varying thickness, Q. J. Mech. Appl. Math., Volume 58 (2005), pp. 645-664
[3] Trapped modes in bent elastic rods, Wave Motion, Volume 42 (2005), pp. 352-366
[4] Trapped modes for an elastic strip with perturbation of the material properties, Q. J. Mech. Appl. Math., Volume 59 (2006), pp. 399-418
[5] Trapped modes in topolographically varying elastic waveguides, Wave Motion, Volume 44 (2007), pp. 205-221
[6] Trapped waves in thin elastic plates, Wave Motion, Volume 45 (2007), pp. 3-15
[7] Localization of nonlinear waves in elastic bodies with inclusions, Acoustical Phys., Volume 50 (2004), pp. 420-426
[8] Perturbation Methods, John Wiley & Sons, New York, 1973
Cited by Sources:
Comments - Policy