Comptes Rendus
Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity
Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 586-591.

The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes.

Le but de cette étude est d'étudier les instabilités de type Taylor–Görtler qui mènent à la première bifurcation d'un écoulement de cavité entraînée. Les modes prédits par une analyse de stabilité linéaire globale sont comparés aux résultats d'une simulation numérique directe d'une cavité cubique à Re=1000 avec des conditions aux limites périodiques dans la troisième direction. Le taux d'amplification et la forme des perturbations issues de la simulation numérique directe permettent clairement d'identifier le mode stationnaire S1 de l'analyse de stabilité, qui domine les autres instabilités instationnaires.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.04.007
Keywords: Fluid mechanics, Lid-driven cavity, Global instabilities, Direct numerical simulation
Mot clés : Mécanique des fluides, Cavité entraînée, Instabilités globales, Simulation numérique directe

Jérèmie Chicheportiche 1; Xavier Merle 1; Xavier Gloerfelt 1; Jean-Christophe Robinet 1

1 Laboratoire SINUMEF, Arts et Métiers ParisTech, 75013 Paris, France
@article{CRMECA_2008__336_7_586_0,
     author = {J\'er\`emie Chicheportiche and Xavier Merle and Xavier Gloerfelt and Jean-Christophe Robinet},
     title = {Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {586--591},
     publisher = {Elsevier},
     volume = {336},
     number = {7},
     year = {2008},
     doi = {10.1016/j.crme.2008.04.007},
     language = {en},
}
TY  - JOUR
AU  - Jérèmie Chicheportiche
AU  - Xavier Merle
AU  - Xavier Gloerfelt
AU  - Jean-Christophe Robinet
TI  - Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 586
EP  - 591
VL  - 336
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2008.04.007
LA  - en
ID  - CRMECA_2008__336_7_586_0
ER  - 
%0 Journal Article
%A Jérèmie Chicheportiche
%A Xavier Merle
%A Xavier Gloerfelt
%A Jean-Christophe Robinet
%T Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity
%J Comptes Rendus. Mécanique
%D 2008
%P 586-591
%V 336
%N 7
%I Elsevier
%R 10.1016/j.crme.2008.04.007
%G en
%F CRMECA_2008__336_7_586_0
Jérèmie Chicheportiche; Xavier Merle; Xavier Gloerfelt; Jean-Christophe Robinet. Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 586-591. doi : 10.1016/j.crme.2008.04.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.007/

[1] J.R. Koseff; R.L. Street Visualization studies of a shear driven three-dimensional recirculating flow, ASME J. Fluids Engrg., Volume 33 (1984), pp. 594-602

[2] S. Albensoeder; H.C. Kuhlmann Nonlinear three-dimensional flow in the lid-driven square cavity, J. Fluid Mech., Volume 569 (2006), pp. 465-480

[3] V. Theofilis; P.W. Duck; J. Owen Viscous linear stability analysis of rectangular duct and cavity flows, J. Fluid Mech., Volume 505 (2004), pp. 249-286

[4] S. Albensoeder; H.C. Kuhlmann Accurate three-dimensional lid-driven cavity flow, J. Comput. Phys., Volume 206 (2005), pp. 536-558

[5] X. Merle, J.-C. Robinet, A. Lerat, Efficient numerical method for global linear stability problem 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, 25–28 June, AIAA Paper 2007–3978, 2007

[6] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK user's guide: solution of large scale eigenvalue problems with Implicity Restarted Arnoldi Methods, 1997, http://www.caam.rice.edu/software/ARPACK/

[7] O. Botella; R. Peyret Benchmark spectral results on the lid-driven cavity flow, Computers and Fluids, Volume 27 (1998), pp. 421-433

[8] J.D. Benson; C.K. Aidun Transition to unsteady nonperiodic state in a through-flow lid-driven cavity, Phys. Fluids A, Volume 4 (1992) no. 10, pp. 2316-2319

Cited by Sources:

Comments - Policy