[Simulation numérique directe et analyse de stabilité globale des instabilités tridimensionnelles dans une cavité entraînée]
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at
Le but de cette étude est d'étudier les instabilités de type Taylor–Görtler qui mènent à la première bifurcation d'un écoulement de cavité entraînée. Les modes prédits par une analyse de stabilité linéaire globale sont comparés aux résultats d'une simulation numérique directe d'une cavité cubique à
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Cavité entraînée, Instabilités globales, Simulation numérique directe
Jérèmie Chicheportiche 1 ; Xavier Merle 1 ; Xavier Gloerfelt 1 ; Jean-Christophe Robinet 1
@article{CRMECA_2008__336_7_586_0, author = {J\'er\`emie Chicheportiche and Xavier Merle and Xavier Gloerfelt and Jean-Christophe Robinet}, title = {Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity}, journal = {Comptes Rendus. M\'ecanique}, pages = {586--591}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2008}, doi = {10.1016/j.crme.2008.04.007}, language = {en}, }
TY - JOUR AU - Jérèmie Chicheportiche AU - Xavier Merle AU - Xavier Gloerfelt AU - Jean-Christophe Robinet TI - Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity JO - Comptes Rendus. Mécanique PY - 2008 SP - 586 EP - 591 VL - 336 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2008.04.007 LA - en ID - CRMECA_2008__336_7_586_0 ER -
%0 Journal Article %A Jérèmie Chicheportiche %A Xavier Merle %A Xavier Gloerfelt %A Jean-Christophe Robinet %T Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity %J Comptes Rendus. Mécanique %D 2008 %P 586-591 %V 336 %N 7 %I Elsevier %R 10.1016/j.crme.2008.04.007 %G en %F CRMECA_2008__336_7_586_0
Jérèmie Chicheportiche; Xavier Merle; Xavier Gloerfelt; Jean-Christophe Robinet. Direct numerical simulation and global stability analysis of three-dimensional instabilities in a lid-driven cavity. Comptes Rendus. Mécanique, Volume 336 (2008) no. 7, pp. 586-591. doi : 10.1016/j.crme.2008.04.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.04.007/
[1] Visualization studies of a shear driven three-dimensional recirculating flow, ASME J. Fluids Engrg., Volume 33 (1984), pp. 594-602
[2] Nonlinear three-dimensional flow in the lid-driven square cavity, J. Fluid Mech., Volume 569 (2006), pp. 465-480
[3] Viscous linear stability analysis of rectangular duct and cavity flows, J. Fluid Mech., Volume 505 (2004), pp. 249-286
[4] Accurate three-dimensional lid-driven cavity flow, J. Comput. Phys., Volume 206 (2005), pp. 536-558
[5] X. Merle, J.-C. Robinet, A. Lerat, Efficient numerical method for global linear stability problem 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, 25–28 June, AIAA Paper 2007–3978, 2007
[6] R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK user's guide: solution of large scale eigenvalue problems with Implicity Restarted Arnoldi Methods, 1997, http://www.caam.rice.edu/software/ARPACK/
[7] Benchmark spectral results on the lid-driven cavity flow, Computers and Fluids, Volume 27 (1998), pp. 421-433
[8] Transition to unsteady nonperiodic state in a through-flow lid-driven cavity, Phys. Fluids A, Volume 4 (1992) no. 10, pp. 2316-2319
- The Lid-Driven Cavity, Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, Volume 50 (2019), p. 233 | DOI:10.1007/978-3-319-91494-7_8
- Successive bifurcations in a fully three-dimensional open cavity flow, Journal of Fluid Mechanics, Volume 844 (2018), p. 855 | DOI:10.1017/jfm.2018.169
- An Alternative Lattice Boltzmann Model for Incompressible Flows and its Stabilization, Communications in Computational Physics, Volume 21 (2017) no. 2, p. 443 | DOI:10.4208/cicp.091014.030515a
- Intermittency and transition to chaos in the cubical lid-driven cavity flow, Fluid Dynamics Research, Volume 48 (2016) no. 6, p. 061421 | DOI:10.1088/0169-5983/48/6/061421
- Centrifugal instabilities in an experimental open cavity flow, Journal of Fluid Mechanics, Volume 788 (2016), p. 670 | DOI:10.1017/jfm.2015.726
- Velocity field and parametric analysis of a subsonic, medium-Reynolds number cavity flow, Experiments in Fluids, Volume 55 (2014) no. 11 | DOI:10.1007/s00348-014-1822-5
- , 43rd Fluid Dynamics Conference (2013) | DOI:10.2514/6.2013-3211
- Transient growth in a right-angled streamwise corner, European Journal of Mechanics - B/Fluids, Volume 37 (2013), p. 99 | DOI:10.1016/j.euromechflu.2012.07.006
- Finite difference methods for viscous incompressible global stability analysis, Computers Fluids, Volume 39 (2010) no. 6, p. 911 | DOI:10.1016/j.compfluid.2009.12.002
- Oscillatory instability of a three-dimensional lid-driven flow in a cube, Physics of Fluids, Volume 22 (2010) no. 9 | DOI:10.1063/1.3487476
Cité par 10 documents. Sources : Crossref
Commentaires - Politique