Comptes Rendus
Un modèle hyperbolique diphasique bi-fluide en milieu poreux
[An hyperbolic two-fluid model in a porous medium]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 8, pp. 650-655.

We introduce an hyperbolic two-fluid two-pressure model to compute unsteady two-phase flows in porous media. The closure laws comply with the entropy inequality, and a unique set of jump conditions holds within each field.

On introduit dans cette Note un modèle d'écoulement bifluide hyperbolique pour simuler les écoulements diphasiques en milieu poreux, en configuration instationnaire. Les lois de fermeture proposées sont consistantes avec l'inégalité d'entropie, et les relations de saut sont uniques champ par champ.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.06.005
Mot clés : Mécanique des fluides numérique, Modèles bifluides, Milieux poreux
Keywords: Computational fluid mechanics, Two-fluid models, Porous media

Jean-Marc Hérard 1

1 E.D.F. recherche et développement, département M.F.E.E., 6, quai Watier, 78401 Chatou cedex, France
@article{CRMECA_2008__336_8_650_0,
     author = {Jean-Marc H\'erard},
     title = {Un mod\`ele hyperbolique diphasique bi-fluide en milieu poreux},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {650--655},
     publisher = {Elsevier},
     volume = {336},
     number = {8},
     year = {2008},
     doi = {10.1016/j.crme.2008.06.005},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Marc Hérard
TI  - Un modèle hyperbolique diphasique bi-fluide en milieu poreux
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 650
EP  - 655
VL  - 336
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2008.06.005
LA  - fr
ID  - CRMECA_2008__336_8_650_0
ER  - 
%0 Journal Article
%A Jean-Marc Hérard
%T Un modèle hyperbolique diphasique bi-fluide en milieu poreux
%J Comptes Rendus. Mécanique
%D 2008
%P 650-655
%V 336
%N 8
%I Elsevier
%R 10.1016/j.crme.2008.06.005
%G fr
%F CRMECA_2008__336_8_650_0
Jean-Marc Hérard. Un modèle hyperbolique diphasique bi-fluide en milieu poreux. Comptes Rendus. Mécanique, Volume 336 (2008) no. 8, pp. 650-655. doi : 10.1016/j.crme.2008.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.06.005/

[1] F. Coquel; T. Gallouët; J.M. Hérard; N. Seguin Closure laws for a two-fluid two-pressure model, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2002), pp. 927-932

[2] T. Gallouët; J.M. Hérard; N. Seguin Numerical modelling of two phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 5, pp. 663-700

[3] R. Saurel; S. Gavrilyuk; F. Renaud A multiphase model with internal degrees of freedom: application to shock-bubble interaction, J. Fluid Mech., Volume 495 (2005), pp. 283-322

[4] M.R. Baer; J.W. Nunziato A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, Volume 12 (1986) no. 6, pp. 861-889

[5] A.K. Kapila; S.F. Son; J.B. Bdzil; R. Menikoff; D.S. Stewart Two-phase modeling of a DDT: structure of the velocity relaxation zone, Phys. Fluids, Volume 9 (1997) no. 12, pp. 3885-3897

[6] J. Glimm; D. Saltz; D.H. Sharp Two-phase flow modelling of a fluid mixing layer, J. Fluid Mech., Volume 378 (1999), pp. 119-143

[7] S. Gavrilyuk; R. Saurel Mathematical and numerical modelling of two-phase compressible flows with micro-inertia, J. Comp. Phys., Volume 175 (2002), pp. 326-360

[8] D. Lhuillier A mean field description of two-phase flows with phase changes, Int. J. Multiphase Flow, Volume 29 (2003), pp. 511-525

[9] M. Papin; R. Abgrall Fermetures entropiques pour les systèmes bifluides à sept équations, C. R. Mecanique, Volume 333 (2005), pp. 838-842

[10] F. Archambeau; L. Girault; J.M. Hérard; O. Hurisse Computing hyperbolic two-fluid models with a porous interface, Aussois, France, June 8–13, ISTE-Wiley (2008), pp. 193-200

[11] J.M. Hérard A three-phase flow model, Math. Comput. Modelling, Volume 45 (2007), pp. 732-755

[12] J.M. Hérard; O. Hurisse A simple method to compute two-fluid models, Int. J. Comp. Fluid Dynam., Volume 19 (2005) no. 7, pp. 475-482

[13] J.M. Hérard, A relaxation scheme to compute three-phase flow models, AIAA paper 2007-4455, http://www.aiaa.org/, 2007

[14] V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions, Thèse de Doctorat, Université Aix-Marseille I, Marseille, France, 27/03/2007

[15] S.T. Munkejord Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation, Computers and Fluids, Volume 36 (2007), pp. 1061-1080

[16] D. Lhuillier Evolution of the volumetric interfacial area in two-phase mixtures, C. R. Mecanique, Volume 332 (2004), pp. 103-108

Cited by Sources:

Comments - Policy