This work consists in evaluating algebraically and numerically the influence of a disturbance on the spectral values of a diagonalizable matrix. Thus, two approaches will be possible; to use the theorem of disturbances of a matrix depending on a parameter, due to Lidskii and primarily based on the structure of Jordan of the no disturbed matrix. The second approach consists in factorizing the matrix system, and then carrying out a numerical calculation of the roots of the disturbances matrix characteristic polynomial. This problem can be a standard model in the equations of the continuous media mechanics. During this work, we chose to use the second approach and in order to illustrate the application, we choose the Rayleigh–Bénard problem in Darcy media, disturbed by a filtering through flow. The matrix form of the problem is calculated starting from a linear stability analysis by a finite elements method. We show that it is possible to break up the general phenomenon into other elementary ones described respectively by a disturbed matrix and a disturbance. A good agreement between the two methods was seen.
Ce travail consiste à évaluer algébriquement et numériquement l'influence d'une perturbation sur les valeurs spectrales d'une matrice diagonalisable. Ainsi, deux approches seront possibles ; utiliser le théorème de perturbations d'une matrice dépendant d'un paramètre, dû à Lidskii et essentiellement basé sur la structure de Jordan de la matrice perturbée. La seconde approche consiste à factoriser le système matriciel puis procéder à un calcul numérique des racines du polynôme caractéristique de la matrice des perturbations. Ce problème peut être un modèle type dans les équations de la mécanique des milieux continus. Au cours de ce travail, nous avons choisi d'utiliser la seconde approche et d'utiliser comme application illustrative, le problème de la convection de Rayleigh–Bénard en milieu de Darcy, perturbée par un débit filtrant. La forme matricielle du problème est calculée à partir d'une analyse de stabilité linéaire par une méthode d'éléments finis. Nous démontrons qu'il est possible de décomposer le phénomène général en d'autres élémentaires décrits respectivement par une matrice perturbée et une perturbation. Un bon accord entre les deux méthodes a été relevé.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Problème à valeurs propres, Matrice perturbée, Convection mixte, Stabilité linéaire, Développement algébrique
Haikel Ben Hamed 1; Rachid Bennacer 1
@article{CRMECA_2008__336_8_656_0, author = {Haikel Ben Hamed and Rachid Bennacer}, title = {Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in {Darcy} media}, journal = {Comptes Rendus. M\'ecanique}, pages = {656--663}, publisher = {Elsevier}, volume = {336}, number = {8}, year = {2008}, doi = {10.1016/j.crme.2008.06.002}, language = {en}, }
TY - JOUR AU - Haikel Ben Hamed AU - Rachid Bennacer TI - Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media JO - Comptes Rendus. Mécanique PY - 2008 SP - 656 EP - 663 VL - 336 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2008.06.002 LA - en ID - CRMECA_2008__336_8_656_0 ER -
%0 Journal Article %A Haikel Ben Hamed %A Rachid Bennacer %T Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media %J Comptes Rendus. Mécanique %D 2008 %P 656-663 %V 336 %N 8 %I Elsevier %R 10.1016/j.crme.2008.06.002 %G en %F CRMECA_2008__336_8_656_0
Haikel Ben Hamed; Rachid Bennacer. Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media. Comptes Rendus. Mécanique, Volume 336 (2008) no. 8, pp. 656-663. doi : 10.1016/j.crme.2008.06.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.06.002/
[1] Double-diffusive convection instability in a vertical porous enclosure, J. Fluid Mech., Volume 368 (1998), pp. 263-289
[2] Convection in Porous Media, Springer-Verlag, 1999
[3] Effects of aspect ratio on vortex flow patterns in mixed convection of air through a bottom-heated horizontal rectangular duct, Int. J. Heat Mass Transfer, Volume 40 (1997) no. 2, pp. 333-346
[4] Pattern formation and dynamics in Rayleigh–Bénard convection: numerical simulations of experimentally realistic geometries, Physica D, Volume 184 (2003), pp. 114-126
[5] Identification of the convective instability in a multi-component solution by 3D simulations, C. R. Mecanique, Volume 333 (2005) no. 10, pp. 739-745
[6] Analytical and numerical investigation of double diffusion in thermally anisotropy multilayer porous medium, Heat Mass Transfer., Volume 41 (2005), pp. 298-305
[7] Symmetry breaking of melt flow typically encountered in a Bridgman configuration heated from below, Appl. Math. Modelling, Volume 30 (2006) no. 11, pp. 1249-1261
[8] Multiple natural convection solution in porous media under cross temperature and concentration gradients, Numer. Heat Transfer Part A, Volume 39 (2001), pp. 553-567
[9] Double diffusive convection in a horizontal porous layer salted from the bottom and heated horizontally, Int. Comm. Heat Mass Transfer, Volume 28 (2001), pp. 1-10
[10] On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl., Volume 18 (1997) no. 4, pp. 793-817
[11] Nongeneric eigenvalue perturbations of Jordan blocks, Linear Algebra Appl., Volume 273 (1998), pp. 45-63
Cited by Sources:
Comments - Policy