This Note presents a new Riemann solver for the Saint-Venant equations in conjunction with the sensitivity problem when the solutions are discontinuous. The solver is based on the a priori assumption of two rarefaction waves. The presence of shocks is detected a posteriori and an extra sensitivity term in the form of a Dirac source term is accounted for in the sensitivity balance equations.
On propose ici un solveur de Riemann pour résoudre les équations de sensibilité conjointement à la projection sur une dimension des équations de Saint-Venant dans le cas de solutions discontinues. Le solveur est basé sur la supposition a priori de deux ondes de raréfaction. La présence de chocs est détectée a posteriori et un terme supplémentaire, sous la forme d'un terme source de Dirac, est introduit dans l'équilibre des équations de sensibilité.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Sensibilités, Lois de conservation hyperboliques, Chocs
Carole Delenne 1; Vincent Guinot 1; Bernard Cappelaere 1
@article{CRMECA_2008__336_10_766_0, author = {Carole Delenne and Vincent Guinot and Bernard Cappelaere}, title = {Direct sensitivity computation for the {Saint-Venant} equations with hydraulic jumps}, journal = {Comptes Rendus. M\'ecanique}, pages = {766--771}, publisher = {Elsevier}, volume = {336}, number = {10}, year = {2008}, doi = {10.1016/j.crme.2008.09.006}, language = {en}, }
TY - JOUR AU - Carole Delenne AU - Vincent Guinot AU - Bernard Cappelaere TI - Direct sensitivity computation for the Saint-Venant equations with hydraulic jumps JO - Comptes Rendus. Mécanique PY - 2008 SP - 766 EP - 771 VL - 336 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2008.09.006 LA - en ID - CRMECA_2008__336_10_766_0 ER -
%0 Journal Article %A Carole Delenne %A Vincent Guinot %A Bernard Cappelaere %T Direct sensitivity computation for the Saint-Venant equations with hydraulic jumps %J Comptes Rendus. Mécanique %D 2008 %P 766-771 %V 336 %N 10 %I Elsevier %R 10.1016/j.crme.2008.09.006 %G en %F CRMECA_2008__336_10_766_0
Carole Delenne; Vincent Guinot; Bernard Cappelaere. Direct sensitivity computation for the Saint-Venant equations with hydraulic jumps. Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 766-771. doi : 10.1016/j.crme.2008.09.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.09.006/
[1] Sensitivities, adjoints and flow optimization, Int. J. Numer. Methods Fluids, Volume 31 (1999), pp. 53-78
[2] A formalism for the differentiation of conservation laws, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 839-845
[3] Sensitivity equations for hyperbolic conservation law-based flow models, Adv. Water Resour., Volume 30 (2007), pp. 1943-1961
[4] Hyperbolic systems of conservation laws, Comm. Pure Appl. Math., Volume 10 (1957), pp. 537-566
[5] Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 1997
[6] Godunov-type Schemes. An Introduction for Engineers, Elsevier, 2003
[7] Riemann solvers for water hammer simulations by Godunov method, Int. J. Numer. Methods Engrg., Volume 49 (2000), pp. 851-870
[8] A general, approximate-state Riemann solver for hyperbolic systems of conservation laws with source terms, Int. J. Numer. Methods Fluids, Volume 56 (2007), pp. 1605-1623
[9] Ondes en mécanique des fluides. Modélisation et simulation numérique, Hermes Publishing, 2006 (in French)
Cited by Sources:
Comments - Policy