Comptes Rendus
Effect of couple stresses on the pulsatile flow through a constricted annulus
[Effet de couples de contrainte sur un flux pulsatoire à travers d'un tube annulaire contraint]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 11-12, pp. 820-827.

In this Note, the pulsatile flow of an incompressible couple stress fluid through an annulus with mild constriction at the outer wall is considered. This configuration is intended as a simple model for studying blood flow in a stenosed artery when a catheter is inserted into it. An analytical expression in terms of Bessel functions of the first and second kind is obtained for the velocity component. The impedance (resistance to the flow) and wall shear stress are calculated and their variation with respect to the couple stress fluid parameter, height of the constriction and size of the catheter on the impedance and wall shear stress is studied graphically. It is observed that increase in the catheter size increases the resistance to the flow as well as the wall shear stress while the trend is reversed in case of couple stress fluid parameter.

Dans cette Note on considère le flux pulsatoire d'un fluide incompressible à couple de contrainte à travers d'un tube annulaire dont la paroi externe est légèrement étranglée. Cette configuration sert de modèle simplifié du flux sanguin dans une artère sténosée pendant l'insertion d'un catétère. La composante de vitesse a été obtenue sous la forme d'une expression analytique en termes des fonctions de Bessel de première et seconde espèce. L'impédance de résistance et la tension de cisaillement de la paroi est également évaluée, ainsi que la variation de ces paramètres en fonction du couple de contrainte relatif au fluide. On étudie graphiquement l'influence de la hauteur de la constriction et de la dimension du catétère sur l'impédance et le couple de cisaillement agissant sur la paroi. On observe que l'augmentation des dimensions du catétère fait augmenter la résistance au flux ainsi que la tension de la paroi ; cependant, la tendance est inverse dans le cas du paramètre du couple de cisaillement du fluide.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.09.008
Keywords: Fluid mechanics, Pulsatile blood flow, Catheterized artery, Constriction, Annulus, Couple stress fluid
Mots-clés : Mécanique des fluides, Flux sanguin pulsatoire, Artère catérisée, Constriction, Tube annulaire, Fluide à couple de contrainte

D. Srinivasacharya 1 ; D. Srikanth 2

1 Department of Mathematics, National Institute of Technology, Warangal-506 004, India
2 Department of Mathematics, Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad-500 050, India
@article{CRMECA_2008__336_11-12_820_0,
     author = {D. Srinivasacharya and D. Srikanth},
     title = {Effect of couple stresses on the pulsatile flow through a constricted annulus},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {820--827},
     publisher = {Elsevier},
     volume = {336},
     number = {11-12},
     year = {2008},
     doi = {10.1016/j.crme.2008.09.008},
     language = {en},
}
TY  - JOUR
AU  - D. Srinivasacharya
AU  - D. Srikanth
TI  - Effect of couple stresses on the pulsatile flow through a constricted annulus
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 820
EP  - 827
VL  - 336
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2008.09.008
LA  - en
ID  - CRMECA_2008__336_11-12_820_0
ER  - 
%0 Journal Article
%A D. Srinivasacharya
%A D. Srikanth
%T Effect of couple stresses on the pulsatile flow through a constricted annulus
%J Comptes Rendus. Mécanique
%D 2008
%P 820-827
%V 336
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2008.09.008
%G en
%F CRMECA_2008__336_11-12_820_0
D. Srinivasacharya; D. Srikanth. Effect of couple stresses on the pulsatile flow through a constricted annulus. Comptes Rendus. Mécanique, Volume 336 (2008) no. 11-12, pp. 820-827. doi : 10.1016/j.crme.2008.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.09.008/

[1] D.F. Young Effect of time dependent stenosis on flow through a tube, J. Engrg. Ind., Trans. ASME, Volume 90 (1968), p. 248

[2] J.S. Lee; Y.C. Fung Flow in locally constricted tubes at low Reynolds numbers, J. Appl. Mech., Trans. ASME, Volume 37 (1970), p. 9

[3] N. Padmanabhan Mathematical model of arterial stenosis, Med. & Biol. Eng. & Comput., Volume 18 (1980), p. 281

[4] V.K. Stokes Couple stresses in fluids, Phys. Fluids, Volume 9 (1966), p. 1710

[5] P. Chaturani; Upadhya Pulsatile flow of a couple stress fluid through circular tubes with applications to blood flow, Biorheology, Volume 15 (1978) no. 3–4, p. 193

[6] P. Sinha; C. Singh Effects of couple stresses on the blood flow through an artery with mild stenosis, Biorheology, Volume 21 (1984) no. 3, p. 303

[7] L.M. Srivastava Flow of couple stress fluid through stenotic blood vessels, J. Biomech., Volume 18 (1985) no. 7, p. 479

[8] D.A. MacDonald Pulsatile flow in a catheterized artery, J. Biomech., Volume 19 (1986), p. 239

[9] G.T. Karahalios Some possible effects of a catheter on the arterial wall, Med. Phys., Volume 17 (1990), p. 922

[10] P. Daripa; R.K. Dash A numerical study of pulsatile blood flow in an eccentric artery using a fast algorithm, J. Engrg. Math., Volume 42 (2002), p. 1

  • Haifaa Alrihieli; Musaad S. Aldhabani Analysis of dissipative slip flow in couple stress nanofluids over a permeable stretching surface for heat and mass transfer optimization, Case Studies in Thermal Engineering, Volume 67 (2025), p. 105819 | DOI:10.1016/j.csite.2025.105819
  • Ghangas Jyoti; Sumeet Gill; Rajbala Rathee; Neha Phogat; Monika Srivastava; Tarun Yadav; Muhd Zu Azhan Bin Yahya; Serguei V. Savilov The impact of magnetic field on pulsatile blood flow through multi-stenosed tube, Zastita Materijala, Volume 65 (2024) no. 3, p. 510 | DOI:10.62638/zasmat1235
  • Rajesh Mahadeva; Vivek Patel; Abhijeet Ghosh; Saurav Dixit; Bhivraj Suthar; Vinay Gupta; Vinay Kumar Awaar; Y.V. Bharadwaj; Manish Gupta; Jagadish Shrisaila Haranatti; Rishab Arora; S. Swadesh Kumar Artificial Intelligence in Water Desalination: A Novel Approach for Global Sustainability, E3S Web of Conferences, Volume 430 (2023), p. 01193 | DOI:10.1051/e3sconf/202343001193
  • Somasundaram Rajamani; Anala Subramanyam Reddy Effects of Joule heating, thermal radiation on MHD pulsating flow of a couple stress hybrid nanofluid in a permeable channel, Nonlinear Analysis. Modelling and Control, Volume 27 (2022) no. 4, pp. 684-699 | DOI:10.15388/namc.2022.27.26741 | Zbl:1497.76128
  • F. Mabood; T. A. Yusuf; Gabriella Bognár Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-76133-y
  • D. Srinivasacharya; G. Madhava Rao Pulsatile flow of couple stress fluid through a bifurcated artery, Ain Shams Engineering Journal, Volume 9 (2018) no. 4, p. 883 | DOI:10.1016/j.asej.2016.04.023
  • Samuel O. Adesanya; C.R. Makhalemele; L. Rundora Natural convection flow of heat generating hydromagnetic couple stress fluid with time periodic boundary conditions, Alexandria Engineering Journal, Volume 57 (2018) no. 3, p. 1977 | DOI:10.1016/j.aej.2017.04.006
  • Abiodun A. Opanuga; Jacob A. Gbadeyan; Hilary I. Okagbue; Olasunmbo O. Agboola Hall current and suction/injection effects on the entropy generation of third grade fluid, International Journal of ADVANCED AND APPLIED SCIENCES, Volume 5 (2018) no. 7, p. 108 | DOI:10.21833/ijaas.2018.07.013
  • Samuel Adesanya; Michael Fakoya Second Law Analysis for Couple Stress Fluid Flow through a Porous Medium with Constant Heat Flux, Entropy, Volume 19 (2017) no. 9, p. 498 | DOI:10.3390/e19090498
  • Samuel O. Adesanya; John A. Falade; Joel C. Ukaegbu Modelling shock wave development in the transient coronary artery filled with couple stress fluid, International Journal of Applied and Computational Mathematics, Volume 3 (2017) no. 2, pp. 1185-1193 | DOI:10.1007/s40819-016-0164-9 | Zbl:1397.76188
  • R. Ponalagusamy Two-fluid model for blood flow through a tapered arterial stenosis: effect of non-zero couple stress boundary condition at the interface, International Journal of Applied and Computational Mathematics, Volume 3 (2017) no. 2, pp. 807-824 | DOI:10.1007/s40819-016-0133-3 | Zbl:1397.76191
  • J. V. Ramana Reddy; D. Srikanth; P. K. Mandal Computational Hemodynamic Analysis of Flow Through Flexible Permeable Stenotic Tapered Artery, International Journal of Applied and Computational Mathematics, Volume 3 (2017) no. S1, p. 1261 | DOI:10.1007/s40819-017-0415-4
  • J. V. Ramana Reddy; D. Srikanth; Samir K. Das Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries, The European Physical Journal Plus, Volume 132 (2017) no. 8 | DOI:10.1140/epjp/i2017-11643-1
  • J.A. Falade; S.O. Adesanya; J.C. Ukaegbu; M.O. Osinowo Entropy generation analysis for variable viscous couple stress fluid flow through a channel with non-uniform wall temperature, Alexandria Engineering Journal, Volume 55 (2016) no. 1, p. 69 | DOI:10.1016/j.aej.2016.01.011
  • D. Srinivasacharya; G. Madhava Rao Computational analysis of magnetic effects on pulsatile flow of couple stress fluid through a bifurcated artery, Computer Methods and Programs in Biomedicine, Volume 137 (2016), p. 269 | DOI:10.1016/j.cmpb.2016.09.015
  • Yiğit Aksoy Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux, International Journal of Thermal Sciences, Volume 107 (2016), p. 1 | DOI:10.1016/j.ijthermalsci.2016.03.017
  • Hamzah Bakhti; Lahcen Azrar Steady flow of couple-stress fluid in constricted tapered artery: effects of transverse magnetic field, moving catheter, and slip velocity, Journal of Applied Mathematics, Volume 2016 (2016), p. 11 (Id/No 9289684) | DOI:10.1155/2016/9289684 | Zbl:1435.76103
  • D. Srinivasacharya; G. Madhava Rao Mathematical model for blood flow through a bifurcated artery using couple stress fluid, Mathematical Biosciences, Volume 278 (2016), pp. 37-47 | DOI:10.1016/j.mbs.2016.05.003 | Zbl:1346.92021
  • J. V. Ramana Reddy; D. Srikanth; S. V. S. S. N. V. G. Krishna Murthy Mathematical modelling of time dependent flow of non-Newtonian fluid through unsymmetric stenotic tapered artery: effects of catheter and slip velocity, Meccanica, Volume 51 (2016) no. 1, pp. 55-69 | DOI:10.1007/s11012-015-0201-5 | Zbl:1382.76305
  • D. Srikanth; J.V. Ramana Reddy; Shubha Jain; Anup Kale Unsteady polar fluid model of blood flow through taperedω-shape stenosed artery: Effects of catheter and velocity slip, Ain Shams Engineering Journal, Volume 6 (2015) no. 3, p. 1093 | DOI:10.1016/j.asej.2015.01.003
  • Samuel O. Adesanya; Oluwole D. Makinde Effects of couple stresses on entropy generation rate in a porous channel with convective heating, Computational and Applied Mathematics, Volume 34 (2015) no. 1, pp. 293-307 | DOI:10.1007/s40314-014-0117-z | Zbl:1446.76155
  • Samuel O. Adesanya; Oluwole D. Makinde Thermodynamic analysis for a third grade fluid through a vertical channel with internal heat generation, Journal of Hydrodynamics, Volume 27 (2015) no. 2, p. 264 | DOI:10.1016/s1001-6058(15)60481-4
  • Samuel O. Adesanya; Oluwole D. Makinde Irreversibility analysis in a couple stress film flow along an inclined heated plate with adiabatic free surface, Physica A, Volume 432 (2015), pp. 222-229 | DOI:10.1016/j.physa.2015.02.062 | Zbl:1400.76016
  • Samuel O. Adesanya; Mostafa Eslami; Mohammad Mirzazadeh; Anjan Biswas Shock wave development in couple stress fluid-filled thin elastic tubes, The European Physical Journal Plus, Volume 130 (2015) no. 6 | DOI:10.1140/epjp/i2015-15114-5
  • Jaw‐Ren Lin; Tsu‐Liang Chou Non‐Newtonian dynamic characteristics of wide composite slider bearings lubricated with couple stress fluids, Industrial Lubrication and Tribology, Volume 65 (2013) no. 1, p. 44 | DOI:10.1108/00368791311292800
  • M. Alizadeh; S. M. Seyedpour; V. Mozafari; Shayan S. Babazadeh Calculation and analysis of velocity and viscous drag in an artery with a periodic pressure gradient, Chinese Journal of Mechanical Engineering, Volume 25 (2012) no. 4, p. 715 | DOI:10.3901/cjme.2012.04.715
  • D. SRINIVASACHARYA; D. SRIKANTH FLOW OF MICROPOLAR FLUID THROUGH CATHETERIZED ARTERY — A MATHEMATICAL MODEL, International Journal of Biomathematics, Volume 05 (2012) no. 02, p. 1250019 | DOI:10.1142/s1793524511001611
  • Mohsen Mehrabi; Saeed Setayeshi Computational fluid dynamics analysis of pulsatile blood flow behavior in modelled stenosed vessels with different severities, Mathematical Problems in Engineering, Volume 2012 (2012), p. 13 (Id/No 804765) | DOI:10.1155/2012/804765 | Zbl:1264.76140
  • S. Nadeem; Noreen Sher Akbar; Awatif A. Hendi; T. Hayat Power law fluid model for blood flow through a tapered artery with a stenosis, Applied Mathematics and Computation, Volume 217 (2011) no. 17, pp. 7108-7116 | DOI:10.1016/j.amc.2011.01.026 | Zbl:1211.92013
  • NOREEN SHER AKBAR; S. NADEEM; MOHAMED ALI JEFFREY FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS, Journal of Mechanics in Medicine and Biology, Volume 11 (2011) no. 03, p. 529 | DOI:10.1142/s0219519411003879

Cité par 30 documents. Sources : Crossref, zbMATH

Commentaires - Politique