[Gaps dans le spectre essentiel d'un guide d'onde élastique, infini et périodique, ayant la forme d'un collier]
Nous décrivons un guide d'ondes élastique homogène et périodique, ayant la forme particulière de collier constitué de grains reliés par des ligaments de diamètre
We describe a periodic homogeneous elastic waveguide of a particular shape of beads connected by ligaments of diameter
Accepté le :
Publié le :
Mots-clés : Guide d'onde périodique élastique, Faille dans le spectre
Sergey A. Nazarov 1 ; Keijo Ruotsalainen 2 ; Jari Taskinen 3
@article{CRMECA_2009__337_3_119_0, author = {Sergey A. Nazarov and Keijo Ruotsalainen and Jari Taskinen}, title = {Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide}, journal = {Comptes Rendus. M\'ecanique}, pages = {119--123}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2009}, doi = {10.1016/j.crme.2009.03.014}, language = {en}, }
TY - JOUR AU - Sergey A. Nazarov AU - Keijo Ruotsalainen AU - Jari Taskinen TI - Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide JO - Comptes Rendus. Mécanique PY - 2009 SP - 119 EP - 123 VL - 337 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2009.03.014 LA - en ID - CRMECA_2009__337_3_119_0 ER -
%0 Journal Article %A Sergey A. Nazarov %A Keijo Ruotsalainen %A Jari Taskinen %T Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide %J Comptes Rendus. Mécanique %D 2009 %P 119-123 %V 337 %N 3 %I Elsevier %R 10.1016/j.crme.2009.03.014 %G en %F CRMECA_2009__337_3_119_0
Sergey A. Nazarov; Keijo Ruotsalainen; Jari Taskinen. Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 119-123. doi : 10.1016/j.crme.2009.03.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.014/
[1] Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985
[2] Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1972
[3] The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory, Volume 4 (1980) no. 2, pp. 251-270
[4] Spectral Theory of Self-Adjoint Operators in Hilber Space, Reidel Publ. Company, Dordrecht, 1986
[5] Floquet theory for partial differential equations, Russian Math. Surveys, Volume 37 (1982) no. 4, pp. 1-60
[6] Floquet Theory for Partial Differential Equations, Birchäuser, Basel, 1993
[7] Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter be Gruyter, Berlin, New York, 1994
[8] Expansion in characteristic functions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120 (in Russian)
[9] Band-gap structure of spectra of periodic dielectric and acoustic media. II, SIAM J. Appl. Math., Volume 56 (1996), pp. 68-88
[10] Gaps in the spectrum of the Maxwell operator with periodic coefficients, Comm. Math. Phys., Volume 240 (2003) no. 1–2, pp. 161-170
[11] Korn's inequalities for elastic junctions of massive bodies and thin plates and rods, Russian Math. Surveys, Volume 63 (2008) no. 1, pp. 35-107
[12] A gap in the continuous spectrum of an elastic waveguide, C. R. Mecanique, Volume 336 (2008) no. 10, pp. 751-756
[13] A gap opened in the continuous spectrum of a three-dimensional periodic elastic waveguide with traction-free surface, Comput. Math. Math. Phys., Volume 49 (2009) no. 2, pp. 323-333
[14] Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. 2, Comm. Pure Appl. Math., Volume 17 (1964), pp. 35-92
Cité par Sources :
Commentaires - Politique