[Gaps dans le spectre essentiel d'un guide d'onde élastique, infini et périodique, ayant la forme d'un collier]
Nous décrivons un guide d'ondes élastique homogène et périodique, ayant la forme particulière de collier constitué de grains reliés par des ligaments de diamètre de telle sorte que le spectre essentiel contienne des gaps dont le nombre augmente infiniment quand h tend vers zéro.
We describe a periodic homogeneous elastic waveguide of a particular shape of beads connected by ligaments of diameter such that the essential spectrum contains gaps, the number of which grows unboundedly when h tends to +0.
Accepté le :
Publié le :
Mot clés : Guide d'onde périodique élastique, Faille dans le spectre
Sergey A. Nazarov 1 ; Keijo Ruotsalainen 2 ; Jari Taskinen 3
@article{CRMECA_2009__337_3_119_0, author = {Sergey A. Nazarov and Keijo Ruotsalainen and Jari Taskinen}, title = {Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide}, journal = {Comptes Rendus. M\'ecanique}, pages = {119--123}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2009}, doi = {10.1016/j.crme.2009.03.014}, language = {en}, }
TY - JOUR AU - Sergey A. Nazarov AU - Keijo Ruotsalainen AU - Jari Taskinen TI - Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide JO - Comptes Rendus. Mécanique PY - 2009 SP - 119 EP - 123 VL - 337 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2009.03.014 LA - en ID - CRMECA_2009__337_3_119_0 ER -
%0 Journal Article %A Sergey A. Nazarov %A Keijo Ruotsalainen %A Jari Taskinen %T Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide %J Comptes Rendus. Mécanique %D 2009 %P 119-123 %V 337 %N 3 %I Elsevier %R 10.1016/j.crme.2009.03.014 %G en %F CRMECA_2009__337_3_119_0
Sergey A. Nazarov; Keijo Ruotsalainen; Jari Taskinen. Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 119-123. doi : 10.1016/j.crme.2009.03.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.014/
[1] Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985
[2] Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1972
[3] The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory, Volume 4 (1980) no. 2, pp. 251-270
[4] Spectral Theory of Self-Adjoint Operators in Hilber Space, Reidel Publ. Company, Dordrecht, 1986
[5] Floquet theory for partial differential equations, Russian Math. Surveys, Volume 37 (1982) no. 4, pp. 1-60
[6] Floquet Theory for Partial Differential Equations, Birchäuser, Basel, 1993
[7] Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter be Gruyter, Berlin, New York, 1994
[8] Expansion in characteristic functions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120 (in Russian)
[9] Band-gap structure of spectra of periodic dielectric and acoustic media. II, SIAM J. Appl. Math., Volume 56 (1996), pp. 68-88
[10] Gaps in the spectrum of the Maxwell operator with periodic coefficients, Comm. Math. Phys., Volume 240 (2003) no. 1–2, pp. 161-170
[11] Korn's inequalities for elastic junctions of massive bodies and thin plates and rods, Russian Math. Surveys, Volume 63 (2008) no. 1, pp. 35-107
[12] A gap in the continuous spectrum of an elastic waveguide, C. R. Mecanique, Volume 336 (2008) no. 10, pp. 751-756
[13] A gap opened in the continuous spectrum of a three-dimensional periodic elastic waveguide with traction-free surface, Comput. Math. Math. Phys., Volume 49 (2009) no. 2, pp. 323-333
[14] Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. 2, Comm. Pure Appl. Math., Volume 17 (1964), pp. 35-92
Cité par Sources :
Commentaires - Politique