Comptes Rendus
Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide
[Gaps dans le spectre essentiel d'un guide d'onde élastique, infini et périodique, ayant la forme d'un collier]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 119-123.

Nous décrivons un guide d'ondes élastique homogène et périodique, ayant la forme particulière de collier constitué de grains reliés par des ligaments de diamètre O(h) de telle sorte que le spectre essentiel contienne des gaps dont le nombre augmente infiniment quand h tend vers zéro.

We describe a periodic homogeneous elastic waveguide of a particular shape of beads connected by ligaments of diameter O(h) such that the essential spectrum contains gaps, the number of which grows unboundedly when h tends to +0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.03.014
Keywords: Periodic elastic waveguide, Gap-band structure of the spectrum
Mot clés : Guide d'onde périodique élastique, Faille dans le spectre

Sergey A. Nazarov 1 ; Keijo Ruotsalainen 2 ; Jari Taskinen 3

1 Institute of Mechanical Engineering Problems, V.O., Bolshoi pr., 61, 199178, St. Petersburg, Russia
2 University of Oulu, Department of Electrical and Information Engineering, Mathematics Division, P.O. Box 4500, 90401 Oulu, Finland
3 University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, 00014 Helsinki, Finland
@article{CRMECA_2009__337_3_119_0,
     author = {Sergey A. Nazarov and Keijo Ruotsalainen and Jari Taskinen},
     title = {Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {119--123},
     publisher = {Elsevier},
     volume = {337},
     number = {3},
     year = {2009},
     doi = {10.1016/j.crme.2009.03.014},
     language = {en},
}
TY  - JOUR
AU  - Sergey A. Nazarov
AU  - Keijo Ruotsalainen
AU  - Jari Taskinen
TI  - Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 119
EP  - 123
VL  - 337
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2009.03.014
LA  - en
ID  - CRMECA_2009__337_3_119_0
ER  - 
%0 Journal Article
%A Sergey A. Nazarov
%A Keijo Ruotsalainen
%A Jari Taskinen
%T Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide
%J Comptes Rendus. Mécanique
%D 2009
%P 119-123
%V 337
%N 3
%I Elsevier
%R 10.1016/j.crme.2009.03.014
%G en
%F CRMECA_2009__337_3_119_0
Sergey A. Nazarov; Keijo Ruotsalainen; Jari Taskinen. Gaps in the essential spectrum of infinite periodic necklace-shaped elastic waveguide. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 119-123. doi : 10.1016/j.crme.2009.03.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.014/

[1] O.A. Ladyzhenskaya Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985

[2] J.L. Lions; E. Magenes Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1972

[3] A. Alonso; B. Simon The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory, Volume 4 (1980) no. 2, pp. 251-270

[4] M.S. Birman; M.Z. Solomyak Spectral Theory of Self-Adjoint Operators in Hilber Space, Reidel Publ. Company, Dordrecht, 1986

[5] P. Kuchment Floquet theory for partial differential equations, Russian Math. Surveys, Volume 37 (1982) no. 4, pp. 1-60

[6] P. Kuchment Floquet Theory for Partial Differential Equations, Birchäuser, Basel, 1993

[7] S.A. Nazarov; B.A. Plamenevskii Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter be Gruyter, Berlin, New York, 1994

[8] I.M. Gelfand Expansion in characteristic functions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120 (in Russian)

[9] A. Figotin; P. Kuchment; A. Figotin; P. Kuchment Band-gap structure of spectra of periodic dielectric and acoustic media. II, SIAM J. Appl. Math., Volume 56 (1996), pp. 68-88

[10] N. Filonov Gaps in the spectrum of the Maxwell operator with periodic coefficients, Comm. Math. Phys., Volume 240 (2003) no. 1–2, pp. 161-170

[11] S.A. Nazarov Korn's inequalities for elastic junctions of massive bodies and thin plates and rods, Russian Math. Surveys, Volume 63 (2008) no. 1, pp. 35-107

[12] S.A. Nazarov A gap in the continuous spectrum of an elastic waveguide, C. R. Mecanique, Volume 336 (2008) no. 10, pp. 751-756

[13] S.A. Nazarov A gap opened in the continuous spectrum of a three-dimensional periodic elastic waveguide with traction-free surface, Comput. Math. Math. Phys., Volume 49 (2009) no. 2, pp. 323-333

[14] S. Agmon; A. Douglis; L. Nirenberg Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. 2, Comm. Pure Appl. Math., Volume 17 (1964), pp. 35-92

Cité par Sources :

Commentaires - Politique