Comptes Rendus
A gap in the continuous spectrum of an elastic waveguide
[Un gap dans le spectre continu d'un guide d'onde élastique]
Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 751-756.

On exhibe un guide périodique d'onde élastique tel que le spectre continu de l'opérateur du problème élastique contienne un gap. Cet effet peut être utilisé pour construire des filtres d'ondes elastiques.

A periodic elastic waveguide is found out such that the continuous spectrum of the elasticity problem operator contains a gap. This effect can be used for constructing elastic wave filters.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2008.07.002
Keywords: Elastic periodic waveguide, Gap in continuous spectrum
Mot clés : Guide périodique d'onde élastique, Gap dans un spectre continu

Sergey A. Nazarov 1

1 Institute of Mechanical Engineering Problems, V.O., Bol'shoi pr., 61, 199178, St.-Petersburg, Russia
@article{CRMECA_2008__336_10_751_0,
     author = {Sergey A. Nazarov},
     title = {A gap in the continuous spectrum of an elastic waveguide},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {751--756},
     publisher = {Elsevier},
     volume = {336},
     number = {10},
     year = {2008},
     doi = {10.1016/j.crme.2008.07.002},
     language = {en},
}
TY  - JOUR
AU  - Sergey A. Nazarov
TI  - A gap in the continuous spectrum of an elastic waveguide
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 751
EP  - 756
VL  - 336
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2008.07.002
LA  - en
ID  - CRMECA_2008__336_10_751_0
ER  - 
%0 Journal Article
%A Sergey A. Nazarov
%T A gap in the continuous spectrum of an elastic waveguide
%J Comptes Rendus. Mécanique
%D 2008
%P 751-756
%V 336
%N 10
%I Elsevier
%R 10.1016/j.crme.2008.07.002
%G en
%F CRMECA_2008__336_10_751_0
Sergey A. Nazarov. A gap in the continuous spectrum of an elastic waveguide. Comptes Rendus. Mécanique, Volume 336 (2008) no. 10, pp. 751-756. doi : 10.1016/j.crme.2008.07.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.07.002/

[1] S.A. Nazarov Asymptotic Theory of Thin Plates and Rods. Vol. 1. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001

[2] A. Figotin; P. Kuchment Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math., Volume 56 (1996), pp. 68-88 (II. Two-dimensional photonic crystals SIAM J. Appl. Math., 56, 1996, pp. 1561-1620)

[3] R. Hempel; K. Lineau Spectral properties of the periodic media inlarge coupling limit, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1445-1470

[4] I.M. Gel'fand Expansions in eigenfunctions of an equation with periodic coefficients, Dokl. Acad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120

[5] P. Kuchment Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993

[6] S.A. Nazarov; B.A. Plamenevsky Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, 1994

[7] I.C. Gohberg; M.G. Krein Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, RI, 1969

[8] S.A. Nazarov Elliptic boundary value problems with periodic coefficients in a cylinder, Math. USSR Izvestija, Volume 18 (1982) no. 1, pp. 89-98

[9] J. Nečas Les méthodes in théorie des équations elliptiques, Masson–Academia, Paris–Prague, 1967

[10] V.A. Kondratiev; O.A. Oleinik Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, Volume 43 (1988) no. 5, pp. 65-119

[11] S.A. Nazarov Korn's inequalities for elastic junctions of massive bodies, thin plates and rods, Russian Math. Surveys, Volume 63 (2008) no. 1, pp. 143-217

[12] M.Sh. Birman; M.Z. Solomyak Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publ. Co., Dordrecht, 1987

[13] S.A. Nazarov Asymptotics of infrequencies of an elastic body with a heavy and hard peak-shaped inclusion, C. R. Mecanique, Volume 335 (2007) no. 12, pp. 757-762

Cité par Sources :

The author gratefully acknowledges the support by N.W.O., the Netherlands Organization for Scientific Research.

Commentaires - Politique