[Progrès récents sur la ligne de contact mobile : une revue]
Comme remarqué il y a longtemps par Laplace, la viscosité peut devenir une source de perturbation importante aux phénomènes capillaires, particulièrement près des surfaces solides auxquelles les particules fluides adhèrent. Une conséquence spectaculaire en est l'impossibilité pour la ligne triple de bouger sur un solide si l'on considère l'interface liquide/vapeur comme une surface matérielle et qu'on impose la condition de non glissement des fluides sur le solide. On a montré récemment que ce phénomène spécifique de mouvement de la ligne de contact peut être décrit en couplant les équations de van der Waals et fluides, ce qui conduit à une théorie rationelle sans divergence et qui reste cohérente avec les résultats de l'équilibre (sans mouvement). Loin de la ligne triple, les équations de la mécanique des fluides s'appliquent sous leur forme habituelle. Dans cette approche, la ligne de contact mobile se déplace près du solide par évaporation ou par condensation de vapeur, ce qui, dans le cas de l'évaporation, implique que les molécules passent du liquide à la vapeur en franchissant une barrière de potentiel élevée. Un facteur d'Arrhenius rend donc ce processus intrinséquement lent, comparé aux vitesses moléculaires. Pour des facteurs d'Arrhenius faibles (et réalistes) le mouvement de la ligne de contact induit un changement dynamique des fonctions entrant dans la théorie de van der Waals. Ce qui peut conduire à une transition de mouillage ou de démouillage, soit à un passage pour l'angle de contact d'une valeur finie à zéro ou reciproquement. La transition de mouillage dynamique a été observée pour des lames liquides descendant sur une plaque (voir Blake et Ruschak, Nature 282 (1979) 489–491) : des pointes apparaissent sur cette ligne quand le liquide se retire à une vitesse supérieure à la vitesse de transition. Des idées proches permettent de comprendre la sensibilité connue de la mobilité de la ligne de contact à la tension de vapeur.
As pointed out long ago by Laplace, viscosity may become a large perturbation to capillary phenomena, especially close to solid surfaces where molecules may stick. A spectacular consequence of this is the impossibility for a triple line to move on a solid if the liquid/vapor interface is considered as a material surface and if the usual no slip boundary condition is enforced. As shown recently this specific phenomenon of contact line motion can be described by coupled van der Waals and fluid equations, yielding a rational theory that is divergence free and consistent with the equilibrium results. Far from the triple line, the equations of fluid mechanics are recovered in their usual form. In this approach, the contact line move close to the solid by evaporation or condensation, which requires (for evaporation) the molecules to jump above a high potential barrier on their way from the liquid to the vapor. An Arrhenius factor makes this process intrinsically slow, compared to molecular speeds. For (realistic) very small Arrhenius factors, the motion of the triple line induces a dynamical change of the functions in the van der Waals equations. This may lead to dynamical wetting and dewetting transitions, that is, to a change of the contact angle from a finite to a zero value or conversely. The dynamical wetting transition has been observed in liquids flowing down a plate (see Blake and Ruschak, Nature 282 (1979) 489–491) cusps on the contact line appear when it recedes faster than the speed of transition. Similar ideas account well also for the known sensitivity of contact line mobility to vapor pressure.
Accepté le :
Publié le :
Mots-clés : mécanique des fluides numérique, ligne de contact mobile, champ de phase, effets de retard dus à la cinétique
Yves Pomeau 1
@article{CRMECA_2002__330_3_207_0, author = {Yves Pomeau}, title = {Recent progress in the moving contact line problem: a~review}, journal = {Comptes Rendus. M\'ecanique}, pages = {207--222}, publisher = {Elsevier}, volume = {330}, number = {3}, year = {2002}, doi = {10.1016/S1631-0721(02)01445-6}, language = {en}, }
Yves Pomeau. Recent progress in the moving contact line problem: a review. Comptes Rendus. Mécanique, Volume 330 (2002) no. 3, pp. 207-222. doi : 10.1016/S1631-0721(02)01445-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01445-6/
[1] J.C. Maxwell, in: “Encyclopedia Britannica” (1875), 9th edition, reprinted in “The Scientific Papers of J.C. Maxwell” Ed. W.D. Niven (Dover), Vol. II, p. 54
[2] L. Mahadevan, M. Adda Bedia, Y. Pomeau, Four-phase merging in sessile compound drops, J. Fluid Mech., to appear
[3] Phys. Fluids, 327 (1999), p. 155
[4] Rev. Modern Phys., 57 (1985), p. 827
[5] J. Colloid Interface Sci., 35 (1979), p. 665
[6] Phys. Fluids, 25 (1982), p. 3
[7] C. R. Acad. Sci. Paris, 299 (1984), p. 909
[8] J. Fluid Mech., 77 (1976), p. 665
[9] Annual Rev. Fluid Mech., 11 (1979), p. 371
[10] Annual Rev. Fluid Mech., 30 (1998), p. 139
[11] Int. J. Engrg. Sci., 34 (1996), p. 977
[12] Y. Pomeau, Kinetic retardation effect in the moving contact line problem: analytic approach, Preprint, Fall 2000
[13] Moving contact line, J. de Phys. IV (France), Volume 11 (2001), p. Pr6-199-Pr6-212
[14] C. R. Acad. Sci. Paris, Série IIb, 328 (2000), p. 411
[15] J. Fluid Mech., 453 (2002), pp. 427-438
[16] J. Colloid Interface Sci., 30 (1969), p. 421
[17] Phys. Fluids, 9 (1997), p. 266
[18] J. Fluid Mech., 168 (1986), p. 169
[19] Fluid Dynamics, 11 (1976), p. 714
[20] Langmuir, 15 (1999), p. 2209
[21] Phys. Rev. Lett., 80 (1998), p. 3069
[22] Phys. Rev., 17 (1921), p. 273
[23] Langmuir, 17 (2001), p. 5265
[24] Interfacial Phenomena and the Marangoni Effect (M.G. Velarde; R.Kh. Zeytounian, eds.), CISM–Springer Series, 428, Springer, 2001
[25] Nature, 282 (1979), pp. 489-491
[26] T. Podgorski, Ruisselement en conditions de mouillage partiel, Thèse, Université Paris 6, Pierre et Marie Curie, October 2000
[27] Phys. Rev. E, 62 (2000), p. 2480
[28] U. Thiele, K. Neuffer, M. Besterhorn, Y. Pomeau, M.G. Velarde, Sliding drops in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E (2001) to appear
[29] Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, Volume 64 (2001), p. 031602
[30] U. Thiele, K. Neuffer, M. Besterhorn, Y. Pomeau and M.G. Velarde, Sliding drops on an inclined plane, Colloids and Surfaces, to appear
[31] U. Thiele, K. Neuffer, Y. Pomeau and M.G. Velarde, On the importance of nucleation solutions for the rupture of thin liquid films, Colloids and Surfaces, to appear
[32] Acta Metall., 9 (1960), p. 795
[33] J. Chem. Phys., 66 (1977), p. 3667
[34] C. R. Acad. Sci. Paris, Série II, 300 (1985), p. 231
[35] Physicochemical Hydrodynamics, Ser. B, 174 (1988), p. 667
[36] Ann. de Phys. Suppl., 13 (1988), p. 3
[37] Dynamics of Multiphase Flows Across Interfaces, Lectures Notes in Phys., 467, 1996, p. 8
[38] Trends in Applications of Mathematics to Mechanics (G. Iooss; O. Guhs; A. Nouri, eds.), Monographs and Surveys in Pure Appl. Math., 106, Chapman and Hall/CRC, 2000, pp. 306-312 (Chapter IX)
[39] New Perspectives in Thermodynamics (J. Serrin, ed.), Springer-Verlag, Berlin, 1986, pp. 187-260
[40] J. Fluid Mech., 65 (1974), p. 71
[41] C. R. Acad. Sci. Paris, Série IIb, 329 (2001), p. 277
- Energy Dissipation during Wenzel Wetting via Roughness Scale Interface Dynamics, Langmuir, Volume 40 (2024) no. 31, p. 16190 | DOI:10.1021/acs.langmuir.4c01292
- Thermodynamic Algorithms, Statistical Rock Physics (2024), p. 381 | DOI:10.1007/978-3-031-46700-4_11
- An experimental investigation of flow fields near a liquid–liquid moving contact line, The European Physical Journal Special Topics, Volume 233 (2024) no. 8-9, p. 1653 | DOI:10.1140/epjs/s11734-024-01170-x
- Review: Interactions between electrogenerated bubbles and microfluidic phenomena, International Journal of Hydrogen Energy, Volume 48 (2023) no. 84, p. 32607 | DOI:10.1016/j.ijhydene.2023.04.333
- Challenges of numerical simulation of dynamic wetting phenomena: a review, Current Opinion in Colloid Interface Science, Volume 57 (2022), p. 101523 | DOI:10.1016/j.cocis.2021.101523
- The LBPM software package for simulating multiphase flow on digital images of porous rocks, Computational Geosciences, Volume 25 (2021) no. 3, p. 871 | DOI:10.1007/s10596-020-10028-9
- A thermodynamically consistent model and its conservative numerical approximation for moving contact lines with soluble surfactants, Computer Methods in Applied Mechanics and Engineering, Volume 385 (2021), p. 114033 | DOI:10.1016/j.cma.2021.114033
- Oscillation Characteristics of Single Droplet Impacting Vertically on Smooth Surfaces Using Volume of Fluid Method, Microgravity Science and Technology, Volume 33 (2021) no. 5 | DOI:10.1007/s12217-021-09901-8
- The phase field method for geometric moving interfaces and their numerical approximations, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 425 | DOI:10.1016/bs.hna.2019.05.001
- An energy-stable finite element method for the simulation of moving contact lines in two-phase flows, Journal of Computational Physics, Volume 417 (2020), p. 109582 | DOI:10.1016/j.jcp.2020.109582
- Coalescence of vertically aligned drops over a superhydrophobic surface, Physics of Fluids, Volume 32 (2020) no. 5 | DOI:10.1063/5.0007419
- Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models, accomplishments and new challenges, The European Physical Journal Special Topics, Volume 229 (2020) no. 10, p. 1945 | DOI:10.1140/epjst/e2020-900236-8
- Distinguished Limits of the Navier Slip Model for Moving Contact Lines in Stokes Flow, SIAM Journal on Applied Mathematics, Volume 79 (2019) no. 5, p. 1654 | DOI:10.1137/18m1190677
- Nonlinearity of Finite-Amplitude Sloshing in Rectangular Containers, Journal of Applied Mechanics, Volume 84 (2017) no. 3 | DOI:10.1115/1.4035363
- A Variational Characterization of Fluid Sloshing with Surface Tension, SIAM Journal on Applied Mathematics, Volume 77 (2017) no. 3, p. 995 | DOI:10.1137/16m1104330
- A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids, Advances in Colloid and Interface Science, Volume 236 (2016), p. 43 | DOI:10.1016/j.cis.2016.07.004
- Diffuse interface simulation of ternary fluids in contact with solid, Journal of Computational Physics, Volume 309 (2016), p. 37 | DOI:10.1016/j.jcp.2015.12.054
- Tracking interface and common curve dynamics for two-fluid flow in porous media, Journal of Fluid Mechanics, Volume 796 (2016), p. 211 | DOI:10.1017/jfm.2016.212
- Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability, Physical Review E, Volume 93 (2016) no. 3 | DOI:10.1103/physreve.93.033105
- Elastobuoyant Heavy Spheres: A Unique Way to Study Nonlinear Elasticity, Physical Review X, Volume 6 (2016) no. 4 | DOI:10.1103/physrevx.6.041066
- Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: Analytical modeling and experimental validation, Physics of Fluids, Volume 28 (2016) no. 7 | DOI:10.1063/1.4954787
- On the distinguished limits of the Navier slip model of the moving contact line problem, Journal of Fluid Mechanics, Volume 772 (2015), p. 107 | DOI:10.1017/jfm.2015.173
- Surface Tension: From Fundamental Principles to Applications in Liquids and in Solids, 5th Warsaw School of Statistical Physics (2014) | DOI:10.31338/uw.9788323517399.pp.149-202
- On the derivation of thermodynamically consistent boundary conditions for the Cahn–Hilliard–Navier–Stokes system, International Journal of Engineering Science, Volume 62 (2013), p. 126 | DOI:10.1016/j.ijengsci.2012.09.005
- Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements, Physical Review E, Volume 88 (2013) no. 2 | DOI:10.1103/physreve.88.023022
- The relation of steady evaporating drops fed by an influx and freely evaporating drops, Journal of Engineering Mathematics, Volume 73 (2012) no. 1, p. 17 | DOI:10.1007/s10665-011-9485-1
- Discussion notes: Phase field models and moving contact line in the long perspective, The European Physical Journal Special Topics, Volume 197 (2011) no. 1, p. 11 | DOI:10.1140/epjst/e2011-01431-2
- Contact line moving on a solid, The European Physical Journal Special Topics, Volume 197 (2011) no. 1, p. 15 | DOI:10.1140/epjst/e2011-01432-1
- A few preliminary remarks, quotations and some references, The European Physical Journal Special Topics, Volume 197 (2011) no. 1, p. 3 | DOI:10.1140/epjst/e2011-01430-3
- Can diffuse-interface models quantitatively describe moving contact lines?, The European Physical Journal Special Topics, Volume 197 (2011) no. 1, p. 37 | DOI:10.1140/epjst/e2011-01434-y
- Dynamics of complete wetting liquid under evaporation, EPL (Europhysics Letters), Volume 92 (2010) no. 5, p. 54005 | DOI:10.1209/0295-5075/92/54005
- Contact line motion in confined liquid–gas systems: Slip versus phase transition, The Journal of Chemical Physics, Volume 133 (2010) no. 20 | DOI:10.1063/1.3506886
- Spreading dynamics of power-law fluid droplets, Journal of Physics: Condensed Matter, Volume 21 (2009) no. 46, p. 464117 | DOI:10.1088/0953-8984/21/46/464117
- Wetting and spreading, Reviews of Modern Physics, Volume 81 (2009) no. 2, p. 739 | DOI:10.1103/revmodphys.81.739
- Dynamic drying in the early-stage coalescence of droplets sitting on a plate, EPL (Europhysics Letters), Volume 81 (2008) no. 4, p. 46002 | DOI:10.1209/0295-5075/81/46002
- A boundary element model of microbubble sticking and sliding in the microcirculation, International Journal of Heat and Mass Transfer, Volume 51 (2008) no. 23-24, p. 5700 | DOI:10.1016/j.ijheatmasstransfer.2008.04.050
- Frequencies of gravity–capillary waves on highly curved interfaces with edge constraints, Fluid Dynamics Research, Volume 39 (2007) no. 6, p. 457 | DOI:10.1016/j.fluiddyn.2006.12.002
- A diffuse-interface model for electrowetting drops in a Hele-Shaw cell, Journal of Fluid Mechanics, Volume 590 (2007), p. 411 | DOI:10.1017/s0022112007008154
- Non-Newtonian thin films with normal stresses: dynamics and spreading, The European Physical Journal E, Volume 22 (2007) no. 2, p. 107 | DOI:10.1140/epje/e2007-00026-9
- MACROSCOPIC AND MESOPHYSICS TOGETHER: THE MOVING CONTACT LINE PROBLEM REVISITED, Advances in Sensing with Security Applications, Volume 218 (2006), p. 159 | DOI:10.1007/1-4020-4355-4_05
- Thin films of van der Waals fluid: From interface interactions to wetting transitions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 274 (2006) no. 1-3, p. 170 | DOI:10.1016/j.colsurfa.2005.08.047
- Flow Patterns in the Vicinity of Triple Line Dynamics Arising from a Local Surface Tension Model, Computational Science – ICCS 2006, Volume 3992 (2006), p. 26 | DOI:10.1007/11758525_4
- Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces, Physica A: Statistical Mechanics and its Applications, Volume 358 (2005) no. 1, p. 58 | DOI:10.1016/j.physa.2005.06.017
- Self-similar flow and contact line geometry at the rear of cornered drops, Physics of Fluids, Volume 17 (2005) no. 7 | DOI:10.1063/1.1946607
- Existence of receding and advancing contact lines, Physics of Fluids, Volume 17 (2005) no. 8 | DOI:10.1063/1.2009007
- The contact angle in inviscid fluid mechanics, Proceedings Mathematical Sciences, Volume 115 (2005) no. 2, p. 227 | DOI:10.1007/bf02829629
- Three-dimensional lubrication model of a contact line corner singularity, Europhysics Letters (EPL), Volume 65 (2004) no. 3, p. 365 | DOI:10.1209/epl/i2003-10096-0
- Spinodal dewetting in a volatile liquid film, Physical Review E, Volume 70 (2004) no. 2 | DOI:10.1103/physreve.70.021601
- Mobility and interactions of weakly nonwetting droplets, Physics of Fluids, Volume 16 (2004) no. 7, p. 2604 | DOI:10.1063/1.1758911
- The effects of the contact angle on sloshing in containers, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Volume 460 (2004) no. 2048, p. 2251 | DOI:10.1098/rspa.2004.1281
Cité par 50 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier