[Modélisation de l'évaporation des gouttes en thermodynamique continue : comparaison entre le modèle Gamma-PDF et la QMoM]
La modélisation à Thermodynamique Continue (MTC) (Cotterman et al., 1985) est une méthode appropriée pour réduire les coûts de calcul associés à la modélisation de l'évaporation multi-composant. La composition des gouttes est modélisée par une fonction de distribution qui représente les dizaines d'espèces prises en compte par le modèle classique à Composants Discrets (MCD). Dans la première approche à Thermodynamique Continue développée pour cette application, la composition du mélange était décrite par une fonction de distribution de type fonction Γ (Hallett, 2000). Cependant, cette approche a été mise en défaut dès lors que de la vapeur se condensait à la surface de la goutte (Harstadt et al., 2003). La méthode proposée dans cet article, dite de Quadratrue des Moments, permet d'éviter toute hypothèse sur la forme de la fonction de distribution. A partir des travaux de Lage qui a appliqué cette méthode à l'équilibre thermodynamique des phases (Lage, 2007), ce papier élargit le domaine d'application de la QMoM à l'évaporation des gouttes multi-composant. Les différentes approches à Thermodynamique Continue sont décrites dans la première partie et les résultats obtenus dans un cas de condensation de vapeur sont ensuite comparés et analysés pour illusrer les améliorations apportées par la QMoM.
The Continuous Thermodynamics Model (CTM) (Cotterman et al., 1985) is a suitable method to reduce computational cost of multi-component vaporization models. The droplet composition is described by a probability density function (PDF) rather than tens of components in the classical Discrete Component Model (DCM). In the first CTM method developed for this application, the PDF was assumed to be a Γ-function (Hallett, 2000), but some problems had appeared in the case of vapor condensation at the droplet surface (Harstadt et al., 2003). The method put forward in this article, the Quadrature Method of Moments (QMoM), enables one to avoid any assumption on the PDF mathematical form. Following Lage who has developed this method for phase equilibria (Lage, 2007), this article widens the scope of QMoM to the modelling of multi-component droplet vaporization. The different CTM approaches are presented in the first part and the results obtained for a vapor condensation test case are then compared and analysed to illustrate improvements made by QMoM.
Mots-clés : Combustion, Gouttelette multi-composant, Evaporation, Thermodynamique continue, Modèle Gamma-PDF, Méthode de Quadrature des Moments
Claire Laurent 1 ; Gérard Lavergne 1 ; Philippe Villedieu 1
@article{CRMECA_2009__337_6-7_449_0, author = {Claire Laurent and G\'erard Lavergne and Philippe Villedieu}, title = {Continuous thermodynamics for droplet vaporization: {Comparison} between {Gamma-PDF} model and {QMoM}}, journal = {Comptes Rendus. M\'ecanique}, pages = {449--457}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.004}, language = {en}, }
TY - JOUR AU - Claire Laurent AU - Gérard Lavergne AU - Philippe Villedieu TI - Continuous thermodynamics for droplet vaporization: Comparison between Gamma-PDF model and QMoM JO - Comptes Rendus. Mécanique PY - 2009 SP - 449 EP - 457 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.004 LA - en ID - CRMECA_2009__337_6-7_449_0 ER -
%0 Journal Article %A Claire Laurent %A Gérard Lavergne %A Philippe Villedieu %T Continuous thermodynamics for droplet vaporization: Comparison between Gamma-PDF model and QMoM %J Comptes Rendus. Mécanique %D 2009 %P 449-457 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.004 %G en %F CRMECA_2009__337_6-7_449_0
Claire Laurent; Gérard Lavergne; Philippe Villedieu. Continuous thermodynamics for droplet vaporization: Comparison between Gamma-PDF model and QMoM. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 449-457. doi : 10.1016/j.crme.2009.06.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.004/
[1] Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, 1999
[2] A simple model for the vaporization of droplets with large numbers of components, Combust. Flame, Volume 121 (2000), pp. 334-344
[3] Phase equilibria for mixtures containing very many components. Development and applications of continuous thermodynamics for chemical process design, Ind. Eng. Chem. Process Des. Dev., Volume 24 (1985), pp. 194-203
[4] Statistical model of multicomponent-fuel drop evaporation for many-droplet liquid–gas flow simulations, AIAA J., Volume 41 (2003), pp. 1858-1874
[5] Multi-component fuel droplet vaporization and combustion using spectral continuous mixture theory, Combust. Flame, Volume 135 (2003), pp. 271-284
[6] The quadrature method of moments for continuous thermodynamics, Comput. Chem. Eng., Volume 31 (2007), pp. 782-799
[7] Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., Volume 27 (1997), pp. 255-265
[8] Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., Volume 36 (2005), pp. 43-73
[9] The Properties of Gases and Liquids, McGraw–Hill Book Company, 2009
[10] Error bounds in equilibrium statistical mechanics, J. Math. Phys., Volume 9 (1968), pp. 655-663
[11] Orthogonal Polynomial — Computation and Approximation, Oxford University Press, 2004
[12] Orthogonal polynomials and Gaussian quadrature with nonclassical weight, Comput. Phys., Volume 4 (1990), pp. 423-426
- Modeling the reactive flow of semi-continuous mixtures by the adaptive characterization method, Chemical Engineering Science, Volume 267 (2023), p. 118336 | DOI:10.1016/j.ces.2022.118336
- Heating and Evaporation of Multi-component Droplets, Droplets and Sprays: Simple Models of Complex Processes (2022), p. 175 | DOI:10.1007/978-3-030-99746-5_4
- A hybrid droplet vaporization-adaptive surrogate model using an optimized continuous thermodynamics distribution, Fuel, Volume 288 (2021), p. 119821 | DOI:10.1016/j.fuel.2020.119821
- The solution of continuous kinetic lumping models using the adaptive characterization method, AIChE Journal, Volume 66 (2020) no. 1 | DOI:10.1002/aic.16758
- Blended E85–Diesel Fuel Droplet Heating and Evaporation, Energy Fuels, Volume 33 (2019) no. 3, p. 2477 | DOI:10.1021/acs.energyfuels.8b03014
- A hybrid droplet vaporization-chemical surrogate approach for emulating vaporization, physical properties, and chemical combustion behavior of multicomponent fuels, Proceedings of the Combustion Institute, Volume 37 (2019) no. 3, p. 3229 | DOI:10.1016/j.proci.2018.07.071
- Atomization of Bio-Fossil Fuel Blends, Advances in Biofuels and Bioenergy (2018) | DOI:10.5772/intechopen.73180
- Modelling of Droplet Heating and Evaporation, Droplets and Sprays (2018), p. 45 | DOI:10.1007/978-981-10-7449-3_3
- Ethanol/Gasoline Droplet Heating and Evaporation: Effects of Fuel Blends and Ambient Conditions, Energy Fuels, Volume 32 (2018) no. 6, p. 6498 | DOI:10.1021/acs.energyfuels.8b00366
- Modeling multicomponent fuel droplet vaporization with finite liquid diffusivity using Coupled Algebraic-DQMoM with delumping, Fuel, Volume 212 (2018), p. 554 | DOI:10.1016/j.fuel.2017.10.056
- A fully transient approach on evaporation of multi-component droplets, Applied Thermal Engineering, Volume 125 (2017), p. 584 | DOI:10.1016/j.applthermaleng.2017.07.054
- Modelling of blended Diesel and biodiesel fuel droplet heating and evaporation, Fuel, Volume 187 (2017), p. 349 | DOI:10.1016/j.fuel.2016.09.060
- Direct Quadrature Method of Moments with delumping for modeling multicomponent droplet vaporization, International Journal of Heat and Mass Transfer, Volume 103 (2016), p. 940 | DOI:10.1016/j.ijheatmasstransfer.2016.07.067
- Modelling of automotive fuel droplet heating and evaporation: mathematical tools and approximations, Journal of Physics: Conference Series, Volume 727 (2016), p. 012015 | DOI:10.1088/1742-6596/727/1/012015
- Modelling of biodiesel fuel droplet heating and evaporation: Effects of fuel composition, Fuel, Volume 154 (2015), p. 308 | DOI:10.1016/j.fuel.2015.03.051
- Modelling of gasoline fuel droplets heating and evaporation, Fuel, Volume 159 (2015), p. 373 | DOI:10.1016/j.fuel.2015.06.028
- Cross diffusion effects in the interfacial mass and heat transfer of multicomponent droplets, International Journal of Heat and Mass Transfer, Volume 85 (2015), p. 830 | DOI:10.1016/j.ijheatmasstransfer.2015.01.131
- New approaches to the modelling of multi-component fuel droplet heating and evaporation, Journal of Physics: Conference Series, Volume 585 (2015), p. 012014 | DOI:10.1088/1742-6596/585/1/012014
- Heating and Evaporation of Multicomponent Droplets, Droplets and Sprays (2014), p. 143 | DOI:10.1007/978-1-4471-6386-2_5
- A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation, Fuel, Volume 129 (2014), p. 238 | DOI:10.1016/j.fuel.2014.03.028
- A quasi-discrete model for droplet heating and evaporation: Application to Diesel and gasoline fuels, Fuel, Volume 97 (2012), p. 685 | DOI:10.1016/j.fuel.2012.01.068
- A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets, International Journal of Heat and Mass Transfer, Volume 54 (2011) no. 19-20, p. 4325 | DOI:10.1016/j.ijheatmasstransfer.2011.05.012
- Quadrature method of moments for modeling multi-component spray vaporization, International Journal of Multiphase Flow, Volume 36 (2010) no. 1, p. 51 | DOI:10.1016/j.ijmultiphaseflow.2009.08.005
Cité par 23 documents. Sources : Crossref
Commentaires - Politique