Chemical kinetics modeling and coupling with turbulent combustion models for compressible Large Eddy Simulations (LES) is a critical issue. Accurate flow predictions can only be guaranteed if the coupling is well mastered. In a first attempt to qualify the effect of each model, the case of a lean premixed swirled combustor with comprehensive measures is targeted (species mass fractions and temperature fields). For the investigation, two turbulent combustion models are considered. The first model relies on a presumed PDF approach coupled to a look-up chemistry table obtained with a reduced chemical scheme. The second model makes use of the thickened flame approach using the same reduced chemical scheme but with reaction rates computed explicitly as the computation advances. Then, to estimate kinetic schemes reduction effects, the first model is compared to a third one, with the same PDF approach, but coupled to a look-up chemistry table obtained with a complete chemical scheme. All LES are very close to each other. The main difference between the different predictions relies on CO mass fractions. Although they are all able to return good outlet mass fractions, CO values inside the flame are different depending on the model used.
La modélisation de la cinétique chimique et le couplage avec les modèles de combustion turbulente pour la simulation aux grandes échelles doivent être maîtrisés pour garantir les prédictions d'écoulements de chambres de combustion. Deux modèles de combustion turbulente sont utilisés. Le premier repose sur une approche de PDF présumée couplée à une table chimique obtenue avec une schéma cinétique réduit. Le second modèle utilise l'approche de flamme épaissie et le même schéma cinétique réduit, mais dont les taux de réactions sont calculés explicitement. Puis, pour estimer les effets de réduction de cinétique chimique, le premier modèle est comparé à un troisième, avec la même approche PDF, mais couplée à une table obtenue avec un schéma cinétique complet. Des mesures expérimentales complètes (température et de fractions massiques des espèces) réalisées sur un brûleur prémélangé pauvre sont comparées aux résultats de simulation. Tous les résultats LES sont proches les uns des autres, la différence principale se trouvant sur les fractions massiques de CO.
Mots-clés : Combustion, Cinétique chimique, Modèle de combustion LES
Guillaume Albouze 1; Thierry Poinsot 2; Laurent Gicquel 1
@article{CRMECA_2009__337_6-7_318_0, author = {Guillaume Albouze and Thierry Poinsot and Laurent Gicquel}, title = {Chemical kinetics modeling and {LES} combustion model effects on a perfectly premixed burner}, journal = {Comptes Rendus. M\'ecanique}, pages = {318--328}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.010}, language = {en}, }
TY - JOUR AU - Guillaume Albouze AU - Thierry Poinsot AU - Laurent Gicquel TI - Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner JO - Comptes Rendus. Mécanique PY - 2009 SP - 318 EP - 328 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.010 LA - en ID - CRMECA_2009__337_6-7_318_0 ER -
%0 Journal Article %A Guillaume Albouze %A Thierry Poinsot %A Laurent Gicquel %T Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner %J Comptes Rendus. Mécanique %D 2009 %P 318-328 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.010 %G en %F CRMECA_2009__337_6-7_318_0
Guillaume Albouze; Thierry Poinsot; Laurent Gicquel. Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 318-328. doi : 10.1016/j.crme.2009.06.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.010/
[1] Theoretical and Numerical Combustion, R.T. Edwards, 2005
[2] Progress-variable approach for large eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, Volume 504 (2004), pp. 73-97
[3] Compressible large-eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Combustion and Flame, Volume 137 (2004) no. 4, pp. 489-505
[4] Two-dimensional large eddy simulation of soot formation in the near field of a strongly radiating nonpremixed acetylene–air jet flame, Combustion and Flame, Volume 119 (1999) no. 1/2, pp. 121-133
[5] Modeling of liquid fuel injection, evaporation and mixing in a gas turbine burner using large eddy simulation, Flow, Turbulence and Combustion, Volume 65 (2000), pp. 223-244
[6] Turbulent Combustion, Cambridge University Press, 2000
[7] Large eddy simulation of premixed turbulent combustion using a level-set approach, Proceedings of the Combustion Institute, Volume 29 (2002), pp. 2001-2008
[8] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations, Combustion and Flame, Volume 141 (2005), pp. 40-54
[9] Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 3075-3082
[10] Large eddy simulation of piloting effects on turbulent swirling flames, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 1729-1736
[11] Large-eddy simulation experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, Journal of Fluid Mechanics, Volume 570 (2007), pp. 17-46
[12] LES of an ignition sequence in a gas turbine engine, Combustion and Flame, Volume 154 (2008), pp. 2-22
[13] Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet flame, Journal of Turbulence, Volume 5 (2004), p. 4
[14] DNS of a premixed turbulent V-Flame and LES of a ducted flame using a FSD-PDF subgride scale closure with FPI-tabulated chemistry, Combustion and Flame, Volume 143 (2005) no. 4, pp. 566-586
[15] Large-eddy simulation of a lifted methane–air jet flame in a vitiated coflow, Combustion and Flame, Volume 152 (2008) no. 3, pp. 415-432
[16] Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combustion and Flame, Volume 155 (2008), pp. 247-266
[17] Large-eddy simulation of H2–air auto-ignition using tabulated detailed chemistry, Journal of Turbulence, Volume 9 (2008) no. 13
[18] Large eddy simulations of chemical and acoustic effects on combustion instabilities, Flow, Turbulence and Combustion, Volume 65 (2000) no. 2, pp. 205-222
[19] A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, Volume 12 (2000) no. 7, pp. 1843-1863
[20] Flow forcing techniques for numerical simulation of combustion instabilities, Combustion and Flame, Volume 131 (2002), pp. 371-385
[21] Large eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner, Journal of Turbulence, Volume 5 (2004) no. 37
[22] System identification of a large-scale swirled partially premixed combustor using LES and measurements, Journal of Turbulence, Volume 6 (2005) no. 21, pp. 1-20
[23] High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2005) no. 2, pp. 710-736
[24] Comparison extension of methods for acoustic identification of burners, Combustion and Flame, Volume 142 (2005) no. 4, pp. 388-400
[25] Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner, Combustion and Flame, Volume 145 (2006) no. 1–2, pp. 194-205
[26] Development of high-order Taylor–Galerkin schemes for unsteady calculations, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371
[27] Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combustion and Flame, Volume 150 (2007) no. 1–2, pp. 2-26
[28] P. Weigand, W. Meier, X. Duan, M. Aigner, Laser based investigations of thermo-acoustic instabilities in a lean premixed gas turbine model combustor, in: Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air, May 8–11, 2006, Barcelona, Spain, 2006
[29] P. Weigand, X.R. Duan, W. Meier, U. Meier, M. Aigner, C. Bérat, Experimental investigations of an oscillating lean premixed CH4/air swirl flame in a gas turbine model combustor, in: European Combustion Meeting, 2005
[30] A ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries, Journal of Computational Physics, Volume 221 ( February 2007 ) no. 2, pp. 600-614
[31] Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 1901-1908
[32] Premixed turbulent combustion modeling using a tabulated detailed chemistry and PDF, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 867-874
[33] M. Rullaud, Modélisation de la combustion turbulente via une méthode de tabulation de la cinétique chimique détaillée couplée à des fonctions de densités de probabilité: Application aux foyers aéronautiques, Ph.D. thesis, INSA de Rouen, 2004
[34] Object-Oriented Software for Reacting Flows, http://www.cantera.org
[35] Swirl Flows, Abacus Press, 1984
Cited by Sources:
Comments - Policy