Comptes Rendus
Combustion, flow and spray dynamics for aerospace propulsion
Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame
[Impact du modèle cinétique dans une Simulation aux Grandes Echelles dʼune flamme méthane–air swirlée en régime partiellement prémélangé pauvre]
Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 247-256.

Six cinétiques chimiques réduites sont utilisées pour le calcul dʼune flamme swirlée en régime partiellement prémélangé pauvre avec lʼapproche de Simulation aux Grandes Echelles afin dʼévaluer leur capacité à décrire la structure de flamme et la composition chimique, y compris lʼespèce polluante CO. Les mécanismes cinétiques testés diffèrent par leur complexité, le plus simple étant un mécanisme global à deux étapes, le plus complexe étant un schéma analytique comprenant 13 espèces et 73 réactions. Pour évaluer leurs performances, les mécanismes sont tout dʼabord testés classiquement dans des flammes laminaires prémélangées non étirées se propageant librement. Puis, des calculs de flammes laminaires prémélangées étirées à countre-courant sont analysés pour évaluer simplement la réponse des différents schémas à la turbulence. Ce travail montre que la capacité dʼun mécanisme à décrire correctement une flamme turbulente prémélangée dans une configuration complexe peut être anticipée en analysant les réponses du mécanisme dans des flammes prémélangées laminaires non étirées et étirées.

Six different chemical reduced mechanisms are used in a Large Eddy Simulation of a lean partially premixed swirled methane/air flame in order to investigate their capability to describe the flame structure and the species concentrations comprising the pollutant CO species. The mechanisms range from a two-step fitted mechanism to an analytical scheme composed by 13 species and 73 reactions. Following the classical approach, the performances of the mechanisms have been preliminary analyzed on laminar unstrained free flames. In addition, results for strained premixed counterflow flames have been discussed in order to evaluate their response to turbulence in a very simple way. This work demonstrates that the capability of a mechanism to describe three-dimensional complex turbulent premixed flames could be estimated on results for laminar one-dimensional unstrained and strained flames.

Publié le :
DOI : 10.1016/j.crme.2012.11.007
Keywords: Combustion, Chemical description, Partially premixed swirled flame, Response to stretch
Mots-clés : Combustion, Cinétique chimique, Flamme swirlée prémélangée, Réponse à lʼétirement

Benedetta Franzelli 1 ; Eleonore Riber 1 ; Bénédicte Cuenot 1

1 CERFACS, CFD Team, 42, avenue G. Coriolis, 31057 Toulouse cedex 01, France
@article{CRMECA_2013__341_1-2_247_0,
     author = {Benedetta Franzelli and Eleonore Riber and B\'en\'edicte Cuenot},
     title = {Impact of the chemical description on a {Large} {Eddy} {Simulation} of a lean partially premixed swirled flame},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {247--256},
     publisher = {Elsevier},
     volume = {341},
     number = {1-2},
     year = {2013},
     doi = {10.1016/j.crme.2012.11.007},
     language = {en},
}
TY  - JOUR
AU  - Benedetta Franzelli
AU  - Eleonore Riber
AU  - Bénédicte Cuenot
TI  - Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 247
EP  - 256
VL  - 341
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2012.11.007
LA  - en
ID  - CRMECA_2013__341_1-2_247_0
ER  - 
%0 Journal Article
%A Benedetta Franzelli
%A Eleonore Riber
%A Bénédicte Cuenot
%T Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame
%J Comptes Rendus. Mécanique
%D 2013
%P 247-256
%V 341
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2012.11.007
%G en
%F CRMECA_2013__341_1-2_247_0
Benedetta Franzelli; Eleonore Riber; Bénédicte Cuenot. Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 247-256. doi : 10.1016/j.crme.2012.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.007/

[1] R. Hilbert; F. Tap; H. El-Rabii; D. Thévenin Impact of detailed chemistry and transport models on turbulent combustion simulations, Prog. Energy Combust. Sci., Volume 30 (2004) no. 1, pp. 61-117

[2] J. Simmie Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., Volume 29 (2003) no. 6, pp. 599-634

[3] C. Westbrook; F. Dryer Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., Volume 27 (1981) no. 1–2, pp. 31-43

[4] J.Y. Chen; T. Kaiser; W. Kollmann Transient behavior of simplified reaction mechanisms for methane nonpremixed combustion, Combust. Sci. Technol., Volume 92 (1993), pp. 313-347

[5] P. Boivin; C. Jiménez; A.L. Sanchez; F.A. Williams An explicit reduced mechanism for H2–air combustion, Proc. Combust. Inst., Volume 33 (2011) no. 1, pp. 517-523

[6] U. Maas; S.B. Pope Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, Volume 88 (1992) no. 3–4, pp. 239-264

[7] O. Gicquel; N. Darabiha; D. Thévenin Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst., Volume 28 (2000) no. 2, pp. 1901-1908

[8] J.A. van Oijen; F.A. Lammers; L.P.H. de Goey Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134

[9] R.R. Cao; S.B. Pope Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations, Combust. Flame, Volume 142 (2005) no. 4, pp. 438-453

[10] A. Triantafyllidis; E. Mastorakos; R.L.G.M. Eggels Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure, Combust. Flame, Volume 156 (2009) no. 12, pp. 2328-2345

[11] A. Roux; L.Y.M. Gicquel; S. Reichstadt; N. Bertier; G. Staffelbach; F. Vuillot; T. Poinsot Analysis of unsteady reacting flows and impact of chemistry description in Large Eddy Simulations of side-dump ramjet combustors, Combust. Flame, Volume 157 (2010) no. 1, pp. 176-191

[12] B. Franzelli; E. Riber; L.Y. Gicquel; T. Poinsot Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame, Volume 159 (2012), pp. 621-637

[13] W.P. Jones; R.P. Lindstedt Global reaction schemes for hydrocarbon combustion, Combust. Flame, Volume 73 (1988) no. 3, pp. 233-249

[14] N. Peters Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames (R. Glowinsky; B. Larrouturou; R. Temam, eds.), Numerical Simulation of Combustion Phenomena, vol. 241, Springer-Verlag, Berlin, 1985, pp. 90-109

[15] K. Seshadri, N. Peters, in: Workshop on Reduced Kinetic Mechanism and Asymptotic Approximations for Methane–Air Flames, La Jolla, California, 1989.

[16] J.Y. Chen; R.W. Dibble Applications of reduced chemical mechanisms for the prediction of turbulent nonpremixed methane jet flames (M.D. Smooke, ed.), Reduced Chemical Mechanisms and Asymptotic Approximations for Methane–Air Flames, vol. 384, Springer-Verlag, New York, 1991, pp. 193-226

[17] T. Lu; C.K. Law A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combust. Flame, Volume 154 (2008) no. 4, pp. 761-774

[18] R. Sankaran; E.R. Hawkes; J.H. Chen; T. Lu; C.K. Law Structure of a spatially developing turbulent lean methane–air Bunsen flame, Proc. Combust. Inst., Volume 31 (2007), pp. 1291-1298

[19] W. Meier; P. Weigand; X.R. Duan; R. Giezendanner-Thoben Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combust. Flame, Volume 150 (2007) no. 1–2, pp. 2-26

[20] B. Franzelli; E. Riber; M. Sanjosé; T. Poinsot A two-step chemical scheme for kerosene–air premixed flames, Combust. Flame, Volume 157 (2010) no. 7, pp. 1364-1373

[21] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R.T. Edwards, 2005

[22] F. Frenklach; H. Wang; C.L. Yu; M. Goldenberg; C.T. Bowman; R.K. Hanson; D.F. Davidson; E.J. Chang; G.P. Smith; D.M. Golden; W.C. Gardiner; V. Lissianski http://www.me.berkeley.edu/gri_mech

[23] D.G. Goodwin Cantera C++ Users Guide, 2002 http://sourceforge.net/projects/cantera

[24] S. Roux; G. Lartigue; T. Poinsot; U. Meier; C. Bérat Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combust. Flame, Volume 141 (2005) no. 1–2, pp. 40-54

[25] J. Galpin; A. Naudin; L. Vervisch; C. Angelberger; O. Colin; P. Domingo Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame, Volume 155 (2008) no. 1–2, pp. 247-266

[26] G. Albouze; L. Gicquel; T. Poinsot Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner, C. R. Mécanique, Volume 337 (2009) no. 6–7, pp. 318-328

[27] B. Fiorina; R. Vicquelin; P. Auzillon; N. Darabiha; O. Gicquel; D. Veynante A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, Volume 157 (2010) no. 3, pp. 465-475

[28] V. Moureau; P. Domingo; L. Vervisch From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combust. Flame, Volume 158 (2011) no. 7, pp. 1340-1357

[29] V. Moureau; G. Lartigue; Y. Sommerer; C. Angelberger; O. Colin; T. Poinsot Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736

[30] O. Colin; F. Ducros; D. Veynante; T. Poinsot A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863

[31] T. Poinsot; S. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129

  • Fredherico Rodrigues; José M. García-Oliver; José M. Pastor; Daniel Mira Assessment of the Partially Stirred Reactor Model for LES in a Swirl-Stabilized Turbulent Premixed Flame, Flow, Turbulence and Combustion, Volume 114 (2025) no. 1, p. 359 | DOI:10.1007/s10494-024-00589-5
  • Shanshan Zhang; Long Zhang; Pengfei Fu; Hua Zhou; Lingyun Hou; Zhuyin Ren LES Investigation of Kerosene Spray Flame Emission Characteristics in a Staged Combustor, Combustion Science and Technology, Volume 196 (2024) no. 17, p. 4942 | DOI:10.1080/00102202.2023.2240484
  • Ilya E. Gerasimov; Tatyana A. Bolshova; Ksenia N. Osipova; Artëm M. Dmitriev; Denis A. Knyazkov; Andrey G. Shmakov Flame Structure at Elevated Pressure Values and Reduced Reaction Mechanisms for the Combustion of CH4/H2 Mixtures, Energies, Volume 16 (2023) no. 22, p. 7489 | DOI:10.3390/en16227489
  • Seyed Ali Hosseini; Nasser Darabiha; Dominique Thévenin Low Mach number lattice Boltzmann model for turbulent combustion: Flow in confined geometries, Proceedings of the Combustion Institute, Volume 39 (2023) no. 4, p. 5357 | DOI:10.1016/j.proci.2022.08.050
  • P.W. Agostinelli; D. Laera; I. Chterev; I. Boxx; L. Gicquel; T. Poinsot On the impact of H2-enrichment on flame structure and combustion dynamics of a lean partially-premixed turbulent swirling flame, Combustion and Flame, Volume 241 (2022), p. 112120 | DOI:10.1016/j.combustflame.2022.112120
  • Leonardo Langone; Matteo Amerighi; Antonio Andreini Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses, Energies, Volume 15 (2022) no. 3, p. 788 | DOI:10.3390/en15030788
  • Sreejith N.A.; Eleonore Riber; Bénédicte Cuenot Analysis and design of a local time stepping scheme for LES acceleration in reactive and non-reactive flow simulations, Journal of Computational Physics, Volume 470 (2022), p. 111580 | DOI:10.1016/j.jcp.2022.111580
  • Nadim W. Chakroun; Santosh J. Shanbhogue; Soufien Taamallah; Dan Michaels; Gaurav Kewlani; Ahmed F. Ghoneim Investigation of Reduced Kinetics Mechanisms for Accurate LES and Scaling of the Dynamics of Premixed Swirling Oxy-Fuel Combustion, Combustion Science and Technology, Volume 193 (2021) no. 7, p. 1099 | DOI:10.1080/00102202.2019.1684907
  • P.W. Agostinelli; D. Laera; I. Boxx; L. Gicquel; T. Poinsot Impact of wall heat transfer in Large Eddy Simulation of flame dynamics in a swirled combustion chamber, Combustion and Flame, Volume 234 (2021), p. 111728 | DOI:10.1016/j.combustflame.2021.111728
  • Niklas Zettervall; Christer Fureby; Elna J. K. Nilsson Evaluation of Chemical Kinetic Mechanisms for Methane Combustion: A Review from a CFD Perspective, Fuels, Volume 2 (2021) no. 2, p. 210 | DOI:10.3390/fuels2020013
  • Kévin Bioche; Laurent Bricteux; Andrea Bertolino; Alessandro Parente; Julien Blondeau Large Eddy Simulation of rich ammonia/hydrogen/air combustion in a gas turbine burner, International Journal of Hydrogen Energy, Volume 46 (2021) no. 79, p. 39548 | DOI:10.1016/j.ijhydene.2021.09.164
  • P. W. Agostinelli; B. Rochette; D. Laera; J. Dombard; B. Cuenot; L. Gicquel Static mesh adaptation for reliable large eddy simulation of turbulent reacting flows, Physics of Fluids, Volume 33 (2021) no. 3 | DOI:10.1063/5.0040719
  • Alejandro Millán-Merino; Eduardo Fernández-Tarrazo; Mario Sánchez-Sanz; Forman A. Williams Modified multipurpose reduced chemistry for ethanol combustion, Combustion and Flame, Volume 215 (2020), p. 221 | DOI:10.1016/j.combustflame.2020.02.003
  • Paul Palies Transient combustion, Stabilization and Dynamic of Premixed Swirling Flames (2020), p. 159 | DOI:10.1016/b978-0-12-819996-1.00012-3
  • References, Stabilization and Dynamic of Premixed Swirling Flames (2020), p. 345 | DOI:10.1016/b978-0-12-819996-1.00017-2
  • Masoud EidiAttarZade; Sadegh Tabejamaat; Mahmoud Mani; Mohammad Farshchi Numerically investigation of ignition process in a premixed methane-air swirl configuration, Energy, Volume 171 (2019), p. 830 | DOI:10.1016/j.energy.2019.01.005
  • Eleonore Riber; Bénédicte Cuenot; Thierry Poinsot Introducing chemical kinetics into Large Eddy Simulation of turbulent reacting flows, Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45 (2019), p. 899 | DOI:10.1016/b978-0-444-64087-1.00019-x
  • F. Collin-Bastiani; O. Vermorel; C. Lacour; B. Lecordier; B. Cuenot DNS of spark ignition using Analytically Reduced Chemistry including plasma kinetics, Proceedings of the Combustion Institute, Volume 37 (2019) no. 4, p. 5057 | DOI:10.1016/j.proci.2018.07.008
  • P. Benard; G. Lartigue; V. Moureau; R. Mercier Large-Eddy Simulation of the lean-premixed PRECCINSTA burner with wall heat loss, Proceedings of the Combustion Institute, Volume 37 (2019) no. 4, p. 5233 | DOI:10.1016/j.proci.2018.07.026
  • Timothy Gallagher; Suresh Menon, 2018 AIAA Aerospace Sciences Meeting (2018) | DOI:10.2514/6.2018-0163
  • Cédric Mehl; Jérôme Idier; Benoît Fiorina Evaluation of deconvolution modelling applied to numerical combustion, Combustion Theory and Modelling, Volume 22 (2018) no. 1, p. 38 | DOI:10.1080/13647830.2017.1358405
  • Thomas Jaravel; Eleonore Riber; Bénédicte Cuenot; Perrine Pepiot Prediction of flame structure and pollutant formation of Sandia flame D using Large Eddy Simulation with direct integration of chemical kinetics, Combustion and Flame, Volume 188 (2018), p. 180 | DOI:10.1016/j.combustflame.2017.08.028
  • Omar Dounia; Olivier Vermorel; Thierry Poinsot Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combustion and Flame, Volume 193 (2018), p. 313 | DOI:10.1016/j.combustflame.2018.03.033
  • Simon Gövert; Daniel Mira; Jim B. W. Kok; Mariano Vázquez; Guillaume Houzeaux The Effect of Partial Premixing and Heat Loss on the Reacting Flow Field Prediction of a Swirl Stabilized Gas Turbine Model Combustor, Flow, Turbulence and Combustion, Volume 100 (2018) no. 2, p. 503 | DOI:10.1007/s10494-017-9848-4
  • Thierry J. Poinsot; Denis P. Veynante Combustion, Encyclopedia of Computational Mechanics Second Edition (2017), p. 1 | DOI:10.1002/9781119176817.ecm2067
  • B. Franzelli; A. Vié; M. Boileau; B. Fiorina; N. Darabiha Large Eddy Simulation of Swirled Spray Flame Using Detailed and Tabulated Chemical Descriptions, Flow, Turbulence and Combustion, Volume 98 (2017) no. 2, p. 633 | DOI:10.1007/s10494-016-9763-0
  • C.A. Hoerlle; L. Zimmer; F.M. Pereira Numerical study of CO2 effects on laminar non-premixed biogas flames employing a global kinetic mechanism and the Flamelet-Generated Manifold technique, Fuel, Volume 203 (2017), p. 671 | DOI:10.1016/j.fuel.2017.04.049
  • T. Jaravel; E. Riber; B. Cuenot; G. Bulat Large Eddy Simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction, Proceedings of the Combustion Institute, Volume 36 (2017) no. 3, p. 3817 | DOI:10.1016/j.proci.2016.07.027
  • Ping Wang; Jochen Fröhlich; Ulrich Maas; Zhi-xia He; Cai-jun Wang A detailed comparison of two sub-grid scale combustion models via large eddy simulation of the PRECCINSTA gas turbine model combustor, Combustion and Flame, Volume 164 (2016), p. 329 | DOI:10.1016/j.combustflame.2015.11.031
  • Benoît Fiorina; Denis Veynante; Sébastien Candel Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames, Flow, Turbulence and Combustion, Volume 94 (2015) no. 1, p. 3 | DOI:10.1007/s10494-014-9579-8
  • N. Ansari; P.A. Strakey; G.M. Goldin; P. Givi Filtered density function simulation of a realistic swirled combustor, Proceedings of the Combustion Institute, Volume 35 (2015) no. 2, p. 1433 | DOI:10.1016/j.proci.2014.05.042
  • G. Bulat; E. Fedina; C. Fureby; W. Meier; U. Stopper Reacting flow in an industrial gas turbine combustor: LES and experimental analysis, Proceedings of the Combustion Institute, Volume 35 (2015) no. 3, p. 3175 | DOI:10.1016/j.proci.2014.05.015

Cité par 32 documents. Sources : Crossref

Commentaires - Politique