[Impact du modèle cinétique dans une Simulation aux Grandes Echelles dʼune flamme méthane–air swirlée en régime partiellement prémélangé pauvre]
Six cinétiques chimiques réduites sont utilisées pour le calcul dʼune flamme swirlée en régime partiellement prémélangé pauvre avec lʼapproche de Simulation aux Grandes Echelles afin dʼévaluer leur capacité à décrire la structure de flamme et la composition chimique, y compris lʼespèce polluante CO. Les mécanismes cinétiques testés diffèrent par leur complexité, le plus simple étant un mécanisme global à deux étapes, le plus complexe étant un schéma analytique comprenant 13 espèces et 73 réactions. Pour évaluer leurs performances, les mécanismes sont tout dʼabord testés classiquement dans des flammes laminaires prémélangées non étirées se propageant librement. Puis, des calculs de flammes laminaires prémélangées étirées à countre-courant sont analysés pour évaluer simplement la réponse des différents schémas à la turbulence. Ce travail montre que la capacité dʼun mécanisme à décrire correctement une flamme turbulente prémélangée dans une configuration complexe peut être anticipée en analysant les réponses du mécanisme dans des flammes prémélangées laminaires non étirées et étirées.
Six different chemical reduced mechanisms are used in a Large Eddy Simulation of a lean partially premixed swirled methane/air flame in order to investigate their capability to describe the flame structure and the species concentrations comprising the pollutant CO species. The mechanisms range from a two-step fitted mechanism to an analytical scheme composed by 13 species and 73 reactions. Following the classical approach, the performances of the mechanisms have been preliminary analyzed on laminar unstrained free flames. In addition, results for strained premixed counterflow flames have been discussed in order to evaluate their response to turbulence in a very simple way. This work demonstrates that the capability of a mechanism to describe three-dimensional complex turbulent premixed flames could be estimated on results for laminar one-dimensional unstrained and strained flames.
Mots-clés : Combustion, Cinétique chimique, Flamme swirlée prémélangée, Réponse à lʼétirement
Benedetta Franzelli 1 ; Eleonore Riber 1 ; Bénédicte Cuenot 1
@article{CRMECA_2013__341_1-2_247_0, author = {Benedetta Franzelli and Eleonore Riber and B\'en\'edicte Cuenot}, title = {Impact of the chemical description on a {Large} {Eddy} {Simulation} of a lean partially premixed swirled flame}, journal = {Comptes Rendus. M\'ecanique}, pages = {247--256}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.007}, language = {en}, }
TY - JOUR AU - Benedetta Franzelli AU - Eleonore Riber AU - Bénédicte Cuenot TI - Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame JO - Comptes Rendus. Mécanique PY - 2013 SP - 247 EP - 256 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.007 LA - en ID - CRMECA_2013__341_1-2_247_0 ER -
%0 Journal Article %A Benedetta Franzelli %A Eleonore Riber %A Bénédicte Cuenot %T Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame %J Comptes Rendus. Mécanique %D 2013 %P 247-256 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.11.007 %G en %F CRMECA_2013__341_1-2_247_0
Benedetta Franzelli; Eleonore Riber; Bénédicte Cuenot. Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 247-256. doi : 10.1016/j.crme.2012.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.007/
[1] Impact of detailed chemistry and transport models on turbulent combustion simulations, Prog. Energy Combust. Sci., Volume 30 (2004) no. 1, pp. 61-117
[2] Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., Volume 29 (2003) no. 6, pp. 599-634
[3] Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., Volume 27 (1981) no. 1–2, pp. 31-43
[4] Transient behavior of simplified reaction mechanisms for methane nonpremixed combustion, Combust. Sci. Technol., Volume 92 (1993), pp. 313-347
[5] An explicit reduced mechanism for H2–air combustion, Proc. Combust. Inst., Volume 33 (2011) no. 1, pp. 517-523
[6] Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, Volume 88 (1992) no. 3–4, pp. 239-264
[7] Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst., Volume 28 (2000) no. 2, pp. 1901-1908
[8] Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134
[9] Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations, Combust. Flame, Volume 142 (2005) no. 4, pp. 438-453
[10] Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure, Combust. Flame, Volume 156 (2009) no. 12, pp. 2328-2345
[11] Analysis of unsteady reacting flows and impact of chemistry description in Large Eddy Simulations of side-dump ramjet combustors, Combust. Flame, Volume 157 (2010) no. 1, pp. 176-191
[12] Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame, Volume 159 (2012), pp. 621-637
[13] Global reaction schemes for hydrocarbon combustion, Combust. Flame, Volume 73 (1988) no. 3, pp. 233-249
[14] Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames (R. Glowinsky; B. Larrouturou; R. Temam, eds.), Numerical Simulation of Combustion Phenomena, vol. 241, Springer-Verlag, Berlin, 1985, pp. 90-109
[15] K. Seshadri, N. Peters, in: Workshop on Reduced Kinetic Mechanism and Asymptotic Approximations for Methane–Air Flames, La Jolla, California, 1989.
[16] Applications of reduced chemical mechanisms for the prediction of turbulent nonpremixed methane jet flames (M.D. Smooke, ed.), Reduced Chemical Mechanisms and Asymptotic Approximations for Methane–Air Flames, vol. 384, Springer-Verlag, New York, 1991, pp. 193-226
[17] A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combust. Flame, Volume 154 (2008) no. 4, pp. 761-774
[18] Structure of a spatially developing turbulent lean methane–air Bunsen flame, Proc. Combust. Inst., Volume 31 (2007), pp. 1291-1298
[19] Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combust. Flame, Volume 150 (2007) no. 1–2, pp. 2-26
[20] A two-step chemical scheme for kerosene–air premixed flames, Combust. Flame, Volume 157 (2010) no. 7, pp. 1364-1373
[21] Theoretical and Numerical Combustion, R.T. Edwards, 2005
[22] http://www.me.berkeley.edu/gri_mech
[23] Cantera C++ Users Guide, 2002 http://sourceforge.net/projects/cantera
[24] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combust. Flame, Volume 141 (2005) no. 1–2, pp. 40-54
[25] Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame, Volume 155 (2008) no. 1–2, pp. 247-266
[26] Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner, C. R. Mécanique, Volume 337 (2009) no. 6–7, pp. 318-328
[27] A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, Volume 157 (2010) no. 3, pp. 465-475
[28] From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combust. Flame, Volume 158 (2011) no. 7, pp. 1340-1357
[29] Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736
[30] A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863
[31] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
- Assessment of the Partially Stirred Reactor Model for LES in a Swirl-Stabilized Turbulent Premixed Flame, Flow, Turbulence and Combustion, Volume 114 (2025) no. 1, p. 359 | DOI:10.1007/s10494-024-00589-5
- LES Investigation of Kerosene Spray Flame Emission Characteristics in a Staged Combustor, Combustion Science and Technology, Volume 196 (2024) no. 17, p. 4942 | DOI:10.1080/00102202.2023.2240484
- Flame Structure at Elevated Pressure Values and Reduced Reaction Mechanisms for the Combustion of CH4/H2 Mixtures, Energies, Volume 16 (2023) no. 22, p. 7489 | DOI:10.3390/en16227489
- Low Mach number lattice Boltzmann model for turbulent combustion: Flow in confined geometries, Proceedings of the Combustion Institute, Volume 39 (2023) no. 4, p. 5357 | DOI:10.1016/j.proci.2022.08.050
- On the impact of H2-enrichment on flame structure and combustion dynamics of a lean partially-premixed turbulent swirling flame, Combustion and Flame, Volume 241 (2022), p. 112120 | DOI:10.1016/j.combustflame.2022.112120
- Large Eddy Simulations of a Low-Swirl Gaseous Partially Premixed Lifted Flame in Presence of Wall Heat Losses, Energies, Volume 15 (2022) no. 3, p. 788 | DOI:10.3390/en15030788
- Analysis and design of a local time stepping scheme for LES acceleration in reactive and non-reactive flow simulations, Journal of Computational Physics, Volume 470 (2022), p. 111580 | DOI:10.1016/j.jcp.2022.111580
- Investigation of Reduced Kinetics Mechanisms for Accurate LES and Scaling of the Dynamics of Premixed Swirling Oxy-Fuel Combustion, Combustion Science and Technology, Volume 193 (2021) no. 7, p. 1099 | DOI:10.1080/00102202.2019.1684907
- Impact of wall heat transfer in Large Eddy Simulation of flame dynamics in a swirled combustion chamber, Combustion and Flame, Volume 234 (2021), p. 111728 | DOI:10.1016/j.combustflame.2021.111728
- Evaluation of Chemical Kinetic Mechanisms for Methane Combustion: A Review from a CFD Perspective, Fuels, Volume 2 (2021) no. 2, p. 210 | DOI:10.3390/fuels2020013
- Large Eddy Simulation of rich ammonia/hydrogen/air combustion in a gas turbine burner, International Journal of Hydrogen Energy, Volume 46 (2021) no. 79, p. 39548 | DOI:10.1016/j.ijhydene.2021.09.164
- Static mesh adaptation for reliable large eddy simulation of turbulent reacting flows, Physics of Fluids, Volume 33 (2021) no. 3 | DOI:10.1063/5.0040719
- Modified multipurpose reduced chemistry for ethanol combustion, Combustion and Flame, Volume 215 (2020), p. 221 | DOI:10.1016/j.combustflame.2020.02.003
- Transient combustion, Stabilization and Dynamic of Premixed Swirling Flames (2020), p. 159 | DOI:10.1016/b978-0-12-819996-1.00012-3
- References, Stabilization and Dynamic of Premixed Swirling Flames (2020), p. 345 | DOI:10.1016/b978-0-12-819996-1.00017-2
- Numerically investigation of ignition process in a premixed methane-air swirl configuration, Energy, Volume 171 (2019), p. 830 | DOI:10.1016/j.energy.2019.01.005
- Introducing chemical kinetics into Large Eddy Simulation of turbulent reacting flows, Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45 (2019), p. 899 | DOI:10.1016/b978-0-444-64087-1.00019-x
- DNS of spark ignition using Analytically Reduced Chemistry including plasma kinetics, Proceedings of the Combustion Institute, Volume 37 (2019) no. 4, p. 5057 | DOI:10.1016/j.proci.2018.07.008
- Large-Eddy Simulation of the lean-premixed PRECCINSTA burner with wall heat loss, Proceedings of the Combustion Institute, Volume 37 (2019) no. 4, p. 5233 | DOI:10.1016/j.proci.2018.07.026
- , 2018 AIAA Aerospace Sciences Meeting (2018) | DOI:10.2514/6.2018-0163
- Evaluation of deconvolution modelling applied to numerical combustion, Combustion Theory and Modelling, Volume 22 (2018) no. 1, p. 38 | DOI:10.1080/13647830.2017.1358405
- Prediction of flame structure and pollutant formation of Sandia flame D using Large Eddy Simulation with direct integration of chemical kinetics, Combustion and Flame, Volume 188 (2018), p. 180 | DOI:10.1016/j.combustflame.2017.08.028
- Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles, Combustion and Flame, Volume 193 (2018), p. 313 | DOI:10.1016/j.combustflame.2018.03.033
- The Effect of Partial Premixing and Heat Loss on the Reacting Flow Field Prediction of a Swirl Stabilized Gas Turbine Model Combustor, Flow, Turbulence and Combustion, Volume 100 (2018) no. 2, p. 503 | DOI:10.1007/s10494-017-9848-4
- Combustion, Encyclopedia of Computational Mechanics Second Edition (2017), p. 1 | DOI:10.1002/9781119176817.ecm2067
- Large Eddy Simulation of Swirled Spray Flame Using Detailed and Tabulated Chemical Descriptions, Flow, Turbulence and Combustion, Volume 98 (2017) no. 2, p. 633 | DOI:10.1007/s10494-016-9763-0
- Numerical study of CO2 effects on laminar non-premixed biogas flames employing a global kinetic mechanism and the Flamelet-Generated Manifold technique, Fuel, Volume 203 (2017), p. 671 | DOI:10.1016/j.fuel.2017.04.049
- Large Eddy Simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction, Proceedings of the Combustion Institute, Volume 36 (2017) no. 3, p. 3817 | DOI:10.1016/j.proci.2016.07.027
- A detailed comparison of two sub-grid scale combustion models via large eddy simulation of the PRECCINSTA gas turbine model combustor, Combustion and Flame, Volume 164 (2016), p. 329 | DOI:10.1016/j.combustflame.2015.11.031
- Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames, Flow, Turbulence and Combustion, Volume 94 (2015) no. 1, p. 3 | DOI:10.1007/s10494-014-9579-8
- Filtered density function simulation of a realistic swirled combustor, Proceedings of the Combustion Institute, Volume 35 (2015) no. 2, p. 1433 | DOI:10.1016/j.proci.2014.05.042
- Reacting flow in an industrial gas turbine combustor: LES and experimental analysis, Proceedings of the Combustion Institute, Volume 35 (2015) no. 3, p. 3175 | DOI:10.1016/j.proci.2014.05.015
Cité par 32 documents. Sources : Crossref
Commentaires - Politique