[Impact du modèle cinétique dans une Simulation aux Grandes Echelles dʼune flamme méthane–air swirlée en régime partiellement prémélangé pauvre]
Six cinétiques chimiques réduites sont utilisées pour le calcul dʼune flamme swirlée en régime partiellement prémélangé pauvre avec lʼapproche de Simulation aux Grandes Echelles afin dʼévaluer leur capacité à décrire la structure de flamme et la composition chimique, y compris lʼespèce polluante CO. Les mécanismes cinétiques testés diffèrent par leur complexité, le plus simple étant un mécanisme global à deux étapes, le plus complexe étant un schéma analytique comprenant 13 espèces et 73 réactions. Pour évaluer leurs performances, les mécanismes sont tout dʼabord testés classiquement dans des flammes laminaires prémélangées non étirées se propageant librement. Puis, des calculs de flammes laminaires prémélangées étirées à countre-courant sont analysés pour évaluer simplement la réponse des différents schémas à la turbulence. Ce travail montre que la capacité dʼun mécanisme à décrire correctement une flamme turbulente prémélangée dans une configuration complexe peut être anticipée en analysant les réponses du mécanisme dans des flammes prémélangées laminaires non étirées et étirées.
Six different chemical reduced mechanisms are used in a Large Eddy Simulation of a lean partially premixed swirled methane/air flame in order to investigate their capability to describe the flame structure and the species concentrations comprising the pollutant CO species. The mechanisms range from a two-step fitted mechanism to an analytical scheme composed by 13 species and 73 reactions. Following the classical approach, the performances of the mechanisms have been preliminary analyzed on laminar unstrained free flames. In addition, results for strained premixed counterflow flames have been discussed in order to evaluate their response to turbulence in a very simple way. This work demonstrates that the capability of a mechanism to describe three-dimensional complex turbulent premixed flames could be estimated on results for laminar one-dimensional unstrained and strained flames.
Mot clés : Combustion, Cinétique chimique, Flamme swirlée prémélangée, Réponse à lʼétirement
Benedetta Franzelli 1 ; Eleonore Riber 1 ; Bénédicte Cuenot 1
@article{CRMECA_2013__341_1-2_247_0, author = {Benedetta Franzelli and Eleonore Riber and B\'en\'edicte Cuenot}, title = {Impact of the chemical description on a {Large} {Eddy} {Simulation} of a lean partially premixed swirled flame}, journal = {Comptes Rendus. M\'ecanique}, pages = {247--256}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.007}, language = {en}, }
TY - JOUR AU - Benedetta Franzelli AU - Eleonore Riber AU - Bénédicte Cuenot TI - Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame JO - Comptes Rendus. Mécanique PY - 2013 SP - 247 EP - 256 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.007 LA - en ID - CRMECA_2013__341_1-2_247_0 ER -
%0 Journal Article %A Benedetta Franzelli %A Eleonore Riber %A Bénédicte Cuenot %T Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame %J Comptes Rendus. Mécanique %D 2013 %P 247-256 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.11.007 %G en %F CRMECA_2013__341_1-2_247_0
Benedetta Franzelli; Eleonore Riber; Bénédicte Cuenot. Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 247-256. doi : 10.1016/j.crme.2012.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.007/
[1] Impact of detailed chemistry and transport models on turbulent combustion simulations, Prog. Energy Combust. Sci., Volume 30 (2004) no. 1, pp. 61-117
[2] Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., Volume 29 (2003) no. 6, pp. 599-634
[3] Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., Volume 27 (1981) no. 1–2, pp. 31-43
[4] Transient behavior of simplified reaction mechanisms for methane nonpremixed combustion, Combust. Sci. Technol., Volume 92 (1993), pp. 313-347
[5] An explicit reduced mechanism for H2–air combustion, Proc. Combust. Inst., Volume 33 (2011) no. 1, pp. 517-523
[6] Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame, Volume 88 (1992) no. 3–4, pp. 239-264
[7] Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst., Volume 28 (2000) no. 2, pp. 1901-1908
[8] Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134
[9] Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations, Combust. Flame, Volume 142 (2005) no. 4, pp. 438-453
[10] Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure, Combust. Flame, Volume 156 (2009) no. 12, pp. 2328-2345
[11] Analysis of unsteady reacting flows and impact of chemistry description in Large Eddy Simulations of side-dump ramjet combustors, Combust. Flame, Volume 157 (2010) no. 1, pp. 176-191
[12] Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame, Volume 159 (2012), pp. 621-637
[13] Global reaction schemes for hydrocarbon combustion, Combust. Flame, Volume 73 (1988) no. 3, pp. 233-249
[14] Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames (R. Glowinsky; B. Larrouturou; R. Temam, eds.), Numerical Simulation of Combustion Phenomena, vol. 241, Springer-Verlag, Berlin, 1985, pp. 90-109
[15] K. Seshadri, N. Peters, in: Workshop on Reduced Kinetic Mechanism and Asymptotic Approximations for Methane–Air Flames, La Jolla, California, 1989.
[16] Applications of reduced chemical mechanisms for the prediction of turbulent nonpremixed methane jet flames (M.D. Smooke, ed.), Reduced Chemical Mechanisms and Asymptotic Approximations for Methane–Air Flames, vol. 384, Springer-Verlag, New York, 1991, pp. 193-226
[17] A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combust. Flame, Volume 154 (2008) no. 4, pp. 761-774
[18] Structure of a spatially developing turbulent lean methane–air Bunsen flame, Proc. Combust. Inst., Volume 31 (2007), pp. 1291-1298
[19] Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combust. Flame, Volume 150 (2007) no. 1–2, pp. 2-26
[20] A two-step chemical scheme for kerosene–air premixed flames, Combust. Flame, Volume 157 (2010) no. 7, pp. 1364-1373
[21] Theoretical and Numerical Combustion, R.T. Edwards, 2005
[22] http://www.me.berkeley.edu/gri_mech
[23] Cantera C++ Users Guide, 2002 http://sourceforge.net/projects/cantera
[24] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combust. Flame, Volume 141 (2005) no. 1–2, pp. 40-54
[25] Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combust. Flame, Volume 155 (2008) no. 1–2, pp. 247-266
[26] Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner, C. R. Mécanique, Volume 337 (2009) no. 6–7, pp. 318-328
[27] A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame, Volume 157 (2010) no. 3, pp. 465-475
[28] From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combust. Flame, Volume 158 (2011) no. 7, pp. 1340-1357
[29] Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736
[30] A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863
[31] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
Cité par Sources :
Commentaires - Politique