We consider a formal asymptotic study of plates with periodically rapidly varying heterogeneities. The asymptotic analysis is performed when both the period of change of the material properties and the thickness of the plate are of the same orders of magnitude. We consider a plate made of Ciarlet–Geymonat type materials (P.G. Ciarlet and G. Geymonat (1982)). Depending on the order of magnitude of the applied loads, we obtain a nonlinear membrane model and a nonlinear membrane inextensional-bending model as announced in E. Pruchnicki (2006). Our approach is based on a sequence of recursive minimization problems.
On considère une étude asymptotique formelle de plaques avec des hétérogénéités variant périodiquement. L'analyse asymptotique est faite lorsque la période de variation des propriétés du matériau de la plaque sont du même ordres de grandeur. On considère une plaque faite de matériaux de Ciarlet–Geymonat (P.G. Ciarlet et G. Geymonat (1982)). En fonction de l'ordre de grandeur des charges appliquées, on obtient un modèle non linéaire membranaire et un modèle non linéaire membranaire flexion-inextensionnelle comme annoncé par E. Pruchnicki (2006). Notre approche est basée sur une suite récursive de problèmes de minimisation.
Accepted:
Published online:
Mot clés : Développements asymptotiques, Plaques, Élasticité non linéaire, Méthodes variationnelles, Homogénéisation
Erick Pruchnicki 1
@article{CRMECA_2009__337_5_297_0, author = {Erick Pruchnicki}, title = {Two-dimensional nonlinear models for heterogeneous plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {297--302}, publisher = {Elsevier}, volume = {337}, number = {5}, year = {2009}, doi = {10.1016/j.crme.2009.06.018}, language = {en}, }
Erick Pruchnicki. Two-dimensional nonlinear models for heterogeneous plates. Comptes Rendus. Mécanique, Volume 337 (2009) no. 5, pp. 297-302. doi : 10.1016/j.crme.2009.06.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.018/
[1] Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, 1997
[2] Plates, Laminates and Shells: Asymptotic Analysis and Homogenization, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000
[3] Non-linearly elastic membrane model for heterogeneous shells by using a new double scale variational formulation: A formal asymptotic approach, J. Elasticity, Volume 84 (2006), pp. 245-280
[4] Nonlinearly elastic membrane model for heterogeneous plates: A formal asymptotic approach by using a new double scale variational formulation, Int. J. Engng. Sci., Volume 40 (2002), pp. 2183-2202
[5] Sur les lois de comportement en élasticité non linéaire compressible, C. R. Acad. Sci. Paris, Ser. II, Volume 295 (1982), pp. 423-426
[6] Convexity condition and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1976) no. 4, pp. 337-403
[7] Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988
[8] Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid inclusions, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 1109-1114
[9] O. Pantz, Quelques problèmes de modélisation en élasticité non linéaire, Ph.D. thesis, University of Paris VI, 2001
[10] Dérivation des modèles de plaques membranaires non linéaires à partir de l'élasticité tri-dimensionnelle, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000), pp. 171-174
[11] Recursive derivation of one-dimensional models from three-dimensional nonlinear elasticity, Math. Mech. Solids, Volume 13 (2008) no. 2, pp. 172-194
[12] Nonlinear thin plate models for a family of Ogden materials, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 819-824
[13] Analyse asymptotique de coques inhomogènes en élasticité linéarisé anisotrope, C. R. Acad. Sci. Paris, Ser. I, Volume 327 (1998), pp. 1011-1014
[14] Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases, Math. Models Methods Appl. Sci., Volume 8 (1995) no. 4, pp. 473-496
[15] Nonlinearly elastic thin plate models for a class of Ogden materials: II. The bending model, Anal. Appl. Singap., Volume 3 (2005), pp. 271-283
[16] Homogenization of nonconvex cellular elastic materials, Arch. Rational Mech. Anal., Volume 99 (1987), pp. 189-212
[17] Homogenization of non-linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Rational Mech. Anal., Volume 122 (1993), pp. 231-290
[18] Microscopic and macroscopic instabilities in finitely strained porous elastomers, J. Mech. Phys. Solids, Volume 55 (2007), pp. 900-938
[19] Nonlinearly elastic thin plate models for a class of Ogden materials: I. The membrane model, Anal. Appl. Singap., Volume 3 (2005), pp. 195-221
[20] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Rational Mech. Anal., Volume 180 (2006), pp. 183-236
Cited by Sources:
Comments - Policy