Comptes Rendus
Two-dimensional nonlinear models for heterogeneous plates
Comptes Rendus. Mécanique, Volume 337 (2009) no. 5, pp. 297-302.

We consider a formal asymptotic study of plates with periodically rapidly varying heterogeneities. The asymptotic analysis is performed when both the period of change of the material properties and the thickness of the plate are of the same orders of magnitude. We consider a plate made of Ciarlet–Geymonat type materials (P.G. Ciarlet and G. Geymonat (1982)). Depending on the order of magnitude of the applied loads, we obtain a nonlinear membrane model and a nonlinear membrane inextensional-bending model as announced in E. Pruchnicki (2006). Our approach is based on a sequence of recursive minimization problems.

On considère une étude asymptotique formelle de plaques avec des hétérogénéités variant périodiquement. L'analyse asymptotique est faite lorsque la période de variation des propriétés du matériau de la plaque sont du même ordres de grandeur. On considère une plaque faite de matériaux de Ciarlet–Geymonat (P.G. Ciarlet et G. Geymonat (1982)). En fonction de l'ordre de grandeur des charges appliquées, on obtient un modèle non linéaire membranaire et un modèle non linéaire membranaire flexion-inextensionnelle comme annoncé par E. Pruchnicki (2006). Notre approche est basée sur une suite récursive de problèmes de minimisation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2009.06.018
Keywords: Asymptotic expansions, Plates, Nonlinear elasticity, Variational methods, Homogenization
Mot clés : Développements asymptotiques, Plaques, Élasticité non linéaire, Méthodes variationnelles, Homogénéisation

Erick Pruchnicki 1

1 École polytechnique universitaire de Lille, cité scientifique, avenue Paul-Langevin, 59655 Villeneuve d'Ascq cedex, France
@article{CRMECA_2009__337_5_297_0,
     author = {Erick Pruchnicki},
     title = {Two-dimensional nonlinear models for heterogeneous plates},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {297--302},
     publisher = {Elsevier},
     volume = {337},
     number = {5},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.018},
     language = {en},
}
TY  - JOUR
AU  - Erick Pruchnicki
TI  - Two-dimensional nonlinear models for heterogeneous plates
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 297
EP  - 302
VL  - 337
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.018
LA  - en
ID  - CRMECA_2009__337_5_297_0
ER  - 
%0 Journal Article
%A Erick Pruchnicki
%T Two-dimensional nonlinear models for heterogeneous plates
%J Comptes Rendus. Mécanique
%D 2009
%P 297-302
%V 337
%N 5
%I Elsevier
%R 10.1016/j.crme.2009.06.018
%G en
%F CRMECA_2009__337_5_297_0
Erick Pruchnicki. Two-dimensional nonlinear models for heterogeneous plates. Comptes Rendus. Mécanique, Volume 337 (2009) no. 5, pp. 297-302. doi : 10.1016/j.crme.2009.06.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.018/

[1] P.G. Ciarlet Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, 1997

[2] T. Lewiński; J.J. Telega Plates, Laminates and Shells: Asymptotic Analysis and Homogenization, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000

[3] E. Pruchnicki Non-linearly elastic membrane model for heterogeneous shells by using a new double scale variational formulation: A formal asymptotic approach, J. Elasticity, Volume 84 (2006), pp. 245-280

[4] E. Pruchnicki Nonlinearly elastic membrane model for heterogeneous plates: A formal asymptotic approach by using a new double scale variational formulation, Int. J. Engng. Sci., Volume 40 (2002), pp. 2183-2202

[5] P.G. Ciarlet; G. Geymonat Sur les lois de comportement en élasticité non linéaire compressible, C. R. Acad. Sci. Paris, Ser. II, Volume 295 (1982), pp. 423-426

[6] J.M. Ball Convexity condition and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1976) no. 4, pp. 337-403

[7] P.G. Ciarlet Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988

[8] G. Panasenko Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid inclusions, C. R. Acad. Sci. Paris, Ser. I, Volume 321 (1995), pp. 1109-1114

[9] O. Pantz, Quelques problèmes de modélisation en élasticité non linéaire, Ph.D. thesis, University of Paris VI, 2001

[10] O. Pantz Dérivation des modèles de plaques membranaires non linéaires à partir de l'élasticité tri-dimensionnelle, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000), pp. 171-174

[11] N. Meunier Recursive derivation of one-dimensional models from three-dimensional nonlinear elasticity, Math. Mech. Solids, Volume 13 (2008) no. 2, pp. 172-194

[12] K. Trabelsi Nonlinear thin plate models for a family of Ogden materials, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 819-824

[13] P. Giroud Analyse asymptotique de coques inhomogènes en élasticité linéarisé anisotrope, C. R. Acad. Sci. Paris, Ser. I, Volume 327 (1998), pp. 1011-1014

[14] D. Caillerie; E. Sanchez-Palencia Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases, Math. Models Methods Appl. Sci., Volume 8 (1995) no. 4, pp. 473-496

[15] K. Trabelsi Nonlinearly elastic thin plate models for a class of Ogden materials: II. The bending model, Anal. Appl. Singap., Volume 3 (2005), pp. 271-283

[16] S. Muller Homogenization of nonconvex cellular elastic materials, Arch. Rational Mech. Anal., Volume 99 (1987), pp. 189-212

[17] G. Geymonat; S. Muller; N. Triantafyllidis Homogenization of non-linearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Rational Mech. Anal., Volume 122 (1993), pp. 231-290

[18] J.C. Michel; O. Lopez-Pamies; P. Ponte-Castañeda; N. Triantafyllidis Microscopic and macroscopic instabilities in finitely strained porous elastomers, J. Mech. Phys. Solids, Volume 55 (2007), pp. 900-938

[19] K. Trabelsi Nonlinearly elastic thin plate models for a class of Ogden materials: I. The membrane model, Anal. Appl. Singap., Volume 3 (2005), pp. 195-221

[20] G. Friesecke; R.D. James; S. Muller A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Rational Mech. Anal., Volume 180 (2006), pp. 183-236

Cited by Sources:

Comments - Policy