[Structure des flammes étirées multidimensionnelles transcritiques]
Les flammes étirées sont courrament utilisées pour analyser la structure de couches réactives et déterminer les propriétés locales d'une combustion turbulente. Ce modèle est pratique car la structure des flammes étirées ne dépend que de la coordonnée transverse et peut être traitée comme un problème unidimensionnel. Cette configuration est envisagée ici dans un contexte multidimensionnel dans lequel l'écoulement étiré est obtenu par deux jets réactifs à contre-courant. Elle est utilisée ici pour examiner la structure de flammes transcritiques dans lesquelles un au moins un des réactifs est injecté à une pression supérieure à la valeur critique mais à une température inférieure à la température critique. Les calculs réalisés dans un domaine bidimensionnel permettent de tester des méthodes numériques développés pour la simulation multi-dimensionnelle de la combustion transcritique. Ces calculs permettent de valider une nouvelle version d'un code de calcul Navier–Stokes (AVBP) adaptée au calcul d'écoulements réactifs transcritiques typiques des conditions de fonctionnement des moteurs-fusées à propulsion liquide. La méthodologie de calcul de tels écoulements est décrite et les résultats obtenus montrent que les flammes étirées transcritiques possèdent les propriétés attendues en termes de structure et de réponse à l'étirement.
Strained flames are commonly used to study the structure of reactive layers and describe the local properties of turbulent combustion. This model is attractive because constant strain rate flames only depend on a transverse coordinate and can be treated as a one-dimensional problem. This configuration is considered in a multidimensional context in which the strained flow is obtained by two counterflowing streams of reactants. It is used to examine the structure of transcritical strained flames in which one or two reactants are injected at a high pressure exceeding the critical value while their temperature is below the critical value. Calculations are carried out in a two-dimensional domain to test numerical models developed for multidimensional simulations and test thermodynamic and transport models devised to deal with high pressure real gas effects. Multidimensional strained flame calculations carried out in this study serve to check the validity of a new version of a Navier–Stokes flow solver (AVBP) conceived to deal with transcritical combustion of interest to liquid propellant rocket applications. This article describes the basic elements of such simulations and discusses results of calculations. It is shown that the calculated multidimensional strained flames have the expected features in terms of structure and response to the imposed strain rate.
Mot clés : Combustion, Combustion transcritique, Flamme étirée, Haute pression
L. Pons 1 ; N. Darabiha 1 ; S. Candel 1, 2 ; T. Schmitt 3 ; B. Cuenot 3
@article{CRMECA_2009__337_6-7_517_0, author = {L. Pons and N. Darabiha and S. Candel and T. Schmitt and B. Cuenot}, title = {The structure of multidimensional strained flames under transcritical conditions}, journal = {Comptes Rendus. M\'ecanique}, pages = {517--527}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.023}, language = {en}, }
TY - JOUR AU - L. Pons AU - N. Darabiha AU - S. Candel AU - T. Schmitt AU - B. Cuenot TI - The structure of multidimensional strained flames under transcritical conditions JO - Comptes Rendus. Mécanique PY - 2009 SP - 517 EP - 527 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.023 LA - en ID - CRMECA_2009__337_6-7_517_0 ER -
%0 Journal Article %A L. Pons %A N. Darabiha %A S. Candel %A T. Schmitt %A B. Cuenot %T The structure of multidimensional strained flames under transcritical conditions %J Comptes Rendus. Mécanique %D 2009 %P 517-527 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.023 %G en %F CRMECA_2009__337_6-7_517_0
L. Pons; N. Darabiha; S. Candel; T. Schmitt; B. Cuenot. The structure of multidimensional strained flames under transcritical conditions. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 517-527. doi : 10.1016/j.crme.2009.06.023. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.023/
[1] The structure of cryogenic flames at elevated pressures, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 1103-1110
[2] Transcritical oxygen/transcritical or supercritical methane combustion, Proceedings of the Combustion Institute, Volume 30 (2005), pp. 2921-2928
[3] Injection of fluids into supercritical environments, Combustion Science and Technology, Volume 178 (2006) no. 1–3, pp. 49-100
[4] Efficient high-pressure state equations, AIChE Journal, Volume 43 (1997), pp. 1605-1610
[5] Direct numerical simulations of supercritical fluid mixing layers applied to heptane–nitrogen, Journal of Fluid Mechanics, Volume 436 (2001), pp. 1-39
[6] Direct numerical simulations of O2/H2 temporal mixing layers under supercritical conditions, AIAA Journal, Volume 40 (2002) no. 5, pp. 914-926
[7] Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study, Journal of Fluid Mechanics, Volume 593 (2007), pp. 57-91
[8] Near-field flow and flame dynamics of LOX/methane shear-coaxial injector under supercritical conditions, Proceedings of the Combustion Institute, Volume 31 (2007) no. 2, pp. 2309-2317
[9] Transcritical vaporization of liquid fuels and propellants, Journal of Propulsion and Power, Volume 15 (1999) no. 6, pp. 896-902
[10] An all-pressure fluid drop model applied to a binary mixture: heptane in nitrogen, International Journal of Multiphase Flow, Volume 26 (2000) no. 10, pp. 1675-1706
[11] Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 925-942
[12] Mass transfer and combustion in transcritical non-premixed counterflows, Combustion Theory and Modelling, Volume 13 (2009), pp. 57-81
[13] Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2005) no. 2, pp. 710-736
[14] A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, Volume 12 (2000) no. 7, pp. 1843-1863
[15] Zonal embedded grids for numerical simulations of wall-bounded turbulent flows, Journal of Computational Physics, Volume 127 (1996) no. 2, pp. 412-423
[16] The effect of numerical errors of turbulence models in large eddy simulations of channel flow, with and without explicit filtering, Journal of Fluid Mechanics, Volume 495 (2003), pp. 323-341
[17] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, in: 14th Fluid and Plasma Dynamic Conference, AIAA Paper 1981-1259, 1981
[18] A study of the laminar flame tip and implications for premixed turbulent combustion, Combustion Science and Technology, Volume 81 (1992) no. 1–3, pp. 45-73
[19] Large-eddy simulation experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, Journal of Fluid Mechanics, Volume 570 (2007), pp. 17-46
[20] J.P. Légier, T. Poinsot, D. Veynante, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, in: Proceedings of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., 2000, pp. 157–168
[21] LES and acoustic analysis of combustion instability in a staged turbulent swirled combustor, AIAA Journal, Volume 44 (2006) no. 4, pp. 741-750
[22] Large eddy simulation of piloting effects on turbulent swirling flames, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 1729-1736
[23] A new two-constant equation of state, Industrial and Engineering Chemistry Fundamentals, Volume 15 (1976), pp. 59-64
[24] The Properties of Gases and Liquids, McGraw–Hill, 2001
[25] Thermodynamics in Materials Science, Taylor & Francis, 2006
[26] J.C. Oefelein, Large eddy simulation of a shear-coaxial LOX-H2 jet at supercritical pressure, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2002-4030, 2002
[27] Molecular Theory of Gases and Liquids, John Wiley & Sons, 1954
[28] Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Industrial and Engineering Chemistry Research, Volume 27 (1988) no. 4, pp. 671-679
[29] Extinction of strained premixed propane–air flames with complex chemistry, Combustion Science and Technology, Volume 60 (1988) no. 4–6, pp. 267-285
[30] Asymptotic structure of counterflow diffusion flames for large activation-energies, Acta Astronautica, Volume 1 (1974) no. 7–8, pp. 1007-1039
[31] The influence of the temperature on extinction and ignition limits of strained hydrogen–air diffusion flames, Combustion Science and Technology, Volume 27 (1992), pp. 269-285
[32] Pressure effects on non-premixed strained flames, Combustion and Flame, Volume 152 (2008) no. 1–2, pp. 218-229
[33] B. Chehroudi, D. Talley, E. Coy, Initial growth rate and visual characteristics of a round jet into a sub- to supercritical environment of relevance to rocket, gas turbine and diesel engines, in: AIAA 37th Aerospace Science Meeting and Exhibit, AIAA Paper 1999-16128, 1999
Cité par Sources :
Commentaires - Politique