The present study uses the LES code AVBP, developed at CERFACS, to simulate transcritical flows. Real gas effects are accounted for by the use of a cubic equation of state, in conjunction with appropriate viscosity and thermal conductivity coefficients. First a single nitrogen round jet at supercritical pressure injected in a gaseous reservoir is simulated. Two cases are considered, one demonstrating a transcritical injection (high density injection), the other being directly injected at supercritical temperature (lower density injection). Comparison with available measurements shows good agreement. Finally, the simulation of a reacting case from the Mascotte bench (ONERA) is performed, consisting in a single coaxial injector injecting transcritical oxygen and supercritical hydrogen in a 60 bar chamber. Mean flow characteristics are in good agreement with the experimental observations of OH∗ emission, whereas temperature comparisons are more difficult to interpret.
L'étude est basée sur l'utilisation du code de Simulation des Grandes Echelles AVBP, développé au CERFACS, pour simuler des écoulements transcritiques. Les effets gaz réels sont modélisés via une équation d'état cubique et des coefficients de viscosité et de conductivité thermique appropriés. D'abord, un jet rond axisymétrique à pression supercritique injecté dans un réservoir gazeux est simulé. Deux cas d'injection sont considérés : l'un en condition transcritique (densité élevée à l'injection) et l'autre à température supercritique (densité faible à l'injection). Un bon accord avec les expériences disponibles est constaté. Finalement, la simulation d'un cas Mascotte réactif (ONERA), où l'oxygène et l'hydrogène sont respectivement injectés en condition transcritique et supercritique dans une chambre à 60 bars, est présenté. Le calcul est en bon accord avec les résultats expérimentaux d'émission de OH∗. La comparaison des températures le long de la couche de mélange est plus délicate à interpréter.
Mots-clés : Combustion, Mécanique des fluides numérique, Simulation des grandes échelles, Supercritique
T. Schmitt 1; L. Selle 2; B. Cuenot 1; T. Poinsot 2
@article{CRMECA_2009__337_6-7_528_0, author = {T. Schmitt and L. Selle and B. Cuenot and T. Poinsot}, title = {Large-Eddy {Simulation} of transcritical flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {528--538}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.022}, language = {en}, }
T. Schmitt; L. Selle; B. Cuenot; T. Poinsot. Large-Eddy Simulation of transcritical flows. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 528-538. doi : 10.1016/j.crme.2009.06.022. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.022/
[1] Molecular Theory of Gases and Liquids, John Wiley & Sons, 1954
[2] The Properties of Gases and Liquids, McGraw–Hill, 2001
[3] Visual characteristics and initial growth rate of round cryogenic jets at subcritical and supercritical pressures, Physics of Fluids, Volume 14 ( February 2002 ) no. 2, pp. 850-861
[4] Raman measurement of cryogenic injection at supercritical pressure, Heat and Mass Transfer, Volume 39 (2003), pp. 709-719
[5] Supercritical nitrogen free jet investigated by spontaneous Raman scattering, Experiments in Fluids, Volume 27 (1999), pp. 497-506
[6] Measurements in an acoustically-driven coaxial jet under sub-, near-, and supercritical conditions, Journal of Propulsion and Power, Volume 23 (2007) no. 2, pp. 364-374
[7] Structure and dynamics of cryogenic flames at supercritical pressure, Combustion Science and Technology, Volume 178 (2006), pp. 161-192
[8] Experimental studies of high-pressure cryogenic flames on the Mascotte facility, Combustion Science and Technology, Volume 178 (2006), pp. 101-128
[9] Steady-state high pressure LOx/H2 rocket engine combustion, Aerospace Science and Technology, Volume 11 (2007), pp. 39-47
[10] G. Singla, Etude des flammes cryotechniques oxygène liquide/méthane à haute pression, Ph.D. thesis, Ecole Centrale de Paris, 2005
[11] Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames, Combustion and Flame, Volume 144 (2006), pp. 151-169
[12] L. Vingert, A. Nicole, M. Habiballah, The Mascotte single injector 60 bar hot test for code validation – test-case specifications and some more experimental data, in: Proceedings of the 3rd International Workshop Rocket Combustion Modeling, Snecma, March 2006
[13] Theory, modeling and analysis of turbulent supercritical mixing, Combustion Science and Technology, Volume 178 (2006), pp. 253-281
[14] Modeling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study, Journal of Fluid Mechanics, Volume 593 (2007), pp. 57-91
[15] L. Vingert, M. Habiballah, P. Vuillermoz, S. Zurbach, Mascotte, a test facility for cryogenic combustion research at high pressure, in: 51st International Astronautical Congress, Rio de Janeiro, Brazil, 2000
[16] F.-X. Demoulin, A. Mura, S. Zurbach, Single flow modeling of high-pressure turbulent cryogenic injection and combustion, in: Proceedings of the 3rd International Workshop Rocket Combustion Modeling, Snecma, March 2006
[17] Cryogenic fluid jets and mixing layers in transcritical and supercritical environments, Combustion Science and Technology, Volume 178 (2006), pp. 193-227
[18] A numerical study of cryogenic fluid injection and mixing under supercritical conditions, Physics of Fluids, Volume 16 (2004) no. 12, pp. 4248-4261
[19] N. Zong, Modeling and simulation of cryogenic fluid injection and mixing dynamics under supercritical conditions, Ph.D. thesis, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 2005
[20] N. Zong, V. Yang, A numerical study of high-pressure oxygen/methane mixing and combustion of a shear coaxial injector, AIAA paper, 2005
[21] S. Matsuyama, J. Shinjo, Y. Mizobuchi, S. Ogawa, A numerical investigation on shear coaxial LOx/GH2 jet flame at supercritical pressure, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006
[22] Thermophysical characteristics of shear-coaxial LOx-H2 flames at supercritical pressure, Proceeding of the Combustion Institute, Volume 30 (2005), pp. 2929-2937
[23] High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2005) no. 2, pp. 710-736
[24] Development of high-order Taylor–Galerkin schemes for unsteady calculations, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371
[25] On the effect of numerical errors in large eddy simulations of turbulent flows, Journal of Computational Physics, Volume 131 (1996), pp. 310-322
[26] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, AIAA paper 81-1259, in: 14th Fluid and Plasma Dynamic Conference, Palo Alto, 1981
[27] Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, Volume 101 (1992) no. 1, pp. 104-129
[28] J.-Ph. Légier, T. Poinsot, D. Veynante, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, in: Proceedings of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., 2000, pp. 157–168
[29] Using a global hydrogen–air combustion model in turbulent reacting flow calculations, AIAA Journal, Volume 21 (1983) no. 4, pp. 586-592
[30] A new two-constant equation of state, Ind. Eng. Chem. Fundam., Volume 15 (1976), pp. 59-64
[31] J.C. Oefelein, Large eddy simulation of a shear-coaxial LOx-H2 jet at supercritical pressure, in: 38th AIAA Aerospace Sciences Meeting & Exhibit, Indianapolis, IN, 2002
[32] Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Industrial and Engineering Chemistry Research, Volume 27 (1988) no. 4, pp. 671-679
[33] High-pressure binary mass diffusion coefficients for combustion applications, Ind. Eng. Chem. Res., Volume 43 (2004), pp. 645-654
[34] Subgrid-scale stress modeling based on the square of the velocity gradient, Flow, Turbulence and Combustion, Volume 62 (1999) no. 3, pp. 183-200
[35] Injection of fluids into supercritical environments, Combustion Science and Technology, Volume 178 (2006), pp. 49-100
[36] Diffusion by a random velocity field, Physics of Fluids, Volume 13 (1970), pp. 22-31
[37] Random flow generation technique for large eddy simulations and particle-dynamics modeling, Trans. ASME Journal of Fluids Engineering, Volume 123 (2001), pp. 359-371
[38] Spreading angle and centerline variation of density of supercritical nitrogen jets, Atomization and Sprays, Volume 11 (2002), pp. 91-106
[39] M. Juniper, Structure et stabilisation des flammes cryotechniques, Ph.D. thesis, Ecole Centrale de Paris, 2001
Cited by Sources:
Comments - Policy