Comptes Rendus
Large-Eddy Simulation of transcritical flows
[Simulation aux Grandes Echelles d'écoulements transcritiques]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 528-538.

L'étude est basée sur l'utilisation du code de Simulation des Grandes Echelles AVBP, développé au CERFACS, pour simuler des écoulements transcritiques. Les effets gaz réels sont modélisés via une équation d'état cubique et des coefficients de viscosité et de conductivité thermique appropriés. D'abord, un jet rond axisymétrique à pression supercritique injecté dans un réservoir gazeux est simulé. Deux cas d'injection sont considérés : l'un en condition transcritique (densité élevée à l'injection) et l'autre à température supercritique (densité faible à l'injection). Un bon accord avec les expériences disponibles est constaté. Finalement, la simulation d'un cas Mascotte réactif (ONERA), où l'oxygène et l'hydrogène sont respectivement injectés en condition transcritique et supercritique dans une chambre à 60 bars, est présenté. Le calcul est en bon accord avec les résultats expérimentaux d'émission de OH. La comparaison des températures le long de la couche de mélange est plus délicate à interpréter.

The present study uses the LES code AVBP, developed at CERFACS, to simulate transcritical flows. Real gas effects are accounted for by the use of a cubic equation of state, in conjunction with appropriate viscosity and thermal conductivity coefficients. First a single nitrogen round jet at supercritical pressure injected in a gaseous reservoir is simulated. Two cases are considered, one demonstrating a transcritical injection (high density injection), the other being directly injected at supercritical temperature (lower density injection). Comparison with available measurements shows good agreement. Finally, the simulation of a reacting case from the Mascotte bench (ONERA) is performed, consisting in a single coaxial injector injecting transcritical oxygen and supercritical hydrogen in a 60 bar chamber. Mean flow characteristics are in good agreement with the experimental observations of OH emission, whereas temperature comparisons are more difficult to interpret.

Publié le :
DOI : 10.1016/j.crme.2009.06.022
Keywords: Combustion, Computational fluid mechanics, Large-Eddy Simulation, Supercritical
Mot clés : Combustion, Mécanique des fluides numérique, Simulation des grandes échelles, Supercritique
T. Schmitt 1 ; L. Selle 2 ; B. Cuenot 1 ; T. Poinsot 2

1 CERFACS, 42, avenue Gaspard-Coriolis, 31057 Toulouse cedex 01, France
2 Institut de mécanique des fluides de Toulouse, allée du Professeur-Camille-Soula, 31400 Toulouse, France
@article{CRMECA_2009__337_6-7_528_0,
     author = {T. Schmitt and L. Selle and B. Cuenot and T. Poinsot},
     title = {Large-Eddy {Simulation} of transcritical flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {528--538},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.022},
     language = {en},
}
TY  - JOUR
AU  - T. Schmitt
AU  - L. Selle
AU  - B. Cuenot
AU  - T. Poinsot
TI  - Large-Eddy Simulation of transcritical flows
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 528
EP  - 538
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.022
LA  - en
ID  - CRMECA_2009__337_6-7_528_0
ER  - 
%0 Journal Article
%A T. Schmitt
%A L. Selle
%A B. Cuenot
%A T. Poinsot
%T Large-Eddy Simulation of transcritical flows
%J Comptes Rendus. Mécanique
%D 2009
%P 528-538
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.022
%G en
%F CRMECA_2009__337_6-7_528_0
T. Schmitt; L. Selle; B. Cuenot; T. Poinsot. Large-Eddy Simulation of transcritical flows. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 528-538. doi : 10.1016/j.crme.2009.06.022. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.022/

[1] J. Hirschfelder; C. Curtiss; B. Bird Molecular Theory of Gases and Liquids, John Wiley & Sons, 1954

[2] B.E. Poling; J.M. Prausnitz; J.P. O'Connel The Properties of Gases and Liquids, McGraw–Hill, 2001

[3] B. Chehroudi; D. Talley; E. Coy Visual characteristics and initial growth rate of round cryogenic jets at subcritical and supercritical pressures, Physics of Fluids, Volume 14 ( February 2002 ) no. 2, pp. 850-861

[4] W. Mayer; J. Tellar; R. Branam; G. Schneider; J. Hussong Raman measurement of cryogenic injection at supercritical pressure, Heat and Mass Transfer, Volume 39 (2003), pp. 709-719

[5] M. Oschwald Supercritical nitrogen free jet investigated by spontaneous Raman scattering, Experiments in Fluids, Volume 27 (1999), pp. 497-506

[6] D.W. Davis; B. Chehroudi Measurements in an acoustically-driven coaxial jet under sub-, near-, and supercritical conditions, Journal of Propulsion and Power, Volume 23 (2007) no. 2, pp. 364-374

[7] S. Candel; M. Juniper; G. Singla; P. Scouflaire; C. Rolon Structure and dynamics of cryogenic flames at supercritical pressure, Combustion Science and Technology, Volume 178 (2006), pp. 161-192

[8] M. Habiballah; M. Orain; F. Grisch; L. Vingert; P. Gicquel Experimental studies of high-pressure cryogenic flames on the Mascotte facility, Combustion Science and Technology, Volume 178 (2006), pp. 101-128

[9] J.J. Smith; G. Schneider; D. Suslov; M. Oschwald; O. Haidn Steady-state high pressure LOx/H2 rocket engine combustion, Aerospace Science and Technology, Volume 11 (2007), pp. 39-47

[10] G. Singla, Etude des flammes cryotechniques oxygène liquide/méthane à haute pression, Ph.D. thesis, Ecole Centrale de Paris, 2005

[11] G. Singla; P. Scouflaire; C. Rolon; S. Candel Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames, Combustion and Flame, Volume 144 (2006), pp. 151-169

[12] L. Vingert, A. Nicole, M. Habiballah, The Mascotte single injector 60 bar hot test for code validation – test-case specifications and some more experimental data, in: Proceedings of the 3rd International Workshop Rocket Combustion Modeling, Snecma, March 2006

[13] J. Bellan Theory, modeling and analysis of turbulent supercritical mixing, Combustion Science and Technology, Volume 178 (2006), pp. 253-281

[14] L.C. Selle; N.A. Okong'o; J. Bellan; K.G. Harstad Modeling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study, Journal of Fluid Mechanics, Volume 593 (2007), pp. 57-91

[15] L. Vingert, M. Habiballah, P. Vuillermoz, S. Zurbach, Mascotte, a test facility for cryogenic combustion research at high pressure, in: 51st International Astronautical Congress, Rio de Janeiro, Brazil, 2000

[16] F.-X. Demoulin, A. Mura, S. Zurbach, Single flow modeling of high-pressure turbulent cryogenic injection and combustion, in: Proceedings of the 3rd International Workshop Rocket Combustion Modeling, Snecma, March 2006

[17] N. Zong; V. Yang Cryogenic fluid jets and mixing layers in transcritical and supercritical environments, Combustion Science and Technology, Volume 178 (2006), pp. 193-227

[18] N. Zong; H. Meng; S.-Y. Hsieh; V. Yang A numerical study of cryogenic fluid injection and mixing under supercritical conditions, Physics of Fluids, Volume 16 (2004) no. 12, pp. 4248-4261

[19] N. Zong, Modeling and simulation of cryogenic fluid injection and mixing dynamics under supercritical conditions, Ph.D. thesis, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 2005

[20] N. Zong, V. Yang, A numerical study of high-pressure oxygen/methane mixing and combustion of a shear coaxial injector, AIAA paper, 2005

[21] S. Matsuyama, J. Shinjo, Y. Mizobuchi, S. Ogawa, A numerical investigation on shear coaxial LOx/GH2 jet flame at supercritical pressure, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006

[22] J.C. Oefelein Thermophysical characteristics of shear-coaxial LOx-H2 flames at supercritical pressure, Proceeding of the Combustion Institute, Volume 30 (2005), pp. 2929-2937

[23] V. Moureau; G. Lartigue; Y. Sommerer; C. Angelberger; O. Colin; T. Poinsot High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2005) no. 2, pp. 710-736

[24] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371

[25] A.G. Kravchenko; P. Moin On the effect of numerical errors in large eddy simulations of turbulent flows, Journal of Computational Physics, Volume 131 (1996), pp. 310-322

[26] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes, AIAA paper 81-1259, in: 14th Fluid and Plasma Dynamic Conference, Palo Alto, 1981

[27] T. Poinsot; S. Lele Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, Volume 101 (1992) no. 1, pp. 104-129

[28] J.-Ph. Légier, T. Poinsot, D. Veynante, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, in: Proceedings of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., 2000, pp. 157–168

[29] R.C. Rogers; W. Chinitz Using a global hydrogen–air combustion model in turbulent reacting flow calculations, AIAA Journal, Volume 21 (1983) no. 4, pp. 586-592

[30] D. Peng; D.B. Robinson A new two-constant equation of state, Ind. Eng. Chem. Fundam., Volume 15 (1976), pp. 59-64

[31] J.C. Oefelein, Large eddy simulation of a shear-coaxial LOx-H2 jet at supercritical pressure, in: 38th AIAA Aerospace Sciences Meeting & Exhibit, Indianapolis, IN, 2002

[32] T.H. Chung; M. Ajlan; L.L. Lee; K.E. Starling Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Industrial and Engineering Chemistry Research, Volume 27 (1988) no. 4, pp. 671-679

[33] K. Harstad; J. Bellan High-pressure binary mass diffusion coefficients for combustion applications, Ind. Eng. Chem. Res., Volume 43 (2004), pp. 645-654

[34] F. Nicoud; F. Ducros Subgrid-scale stress modeling based on the square of the velocity gradient, Flow, Turbulence and Combustion, Volume 62 (1999) no. 3, pp. 183-200

[35] M. Oschwald; J.J. Smith; R. Branam; J. Hussong; A. Shick; B. Chehroudi; D. Talley Injection of fluids into supercritical environments, Combustion Science and Technology, Volume 178 (2006), pp. 49-100

[36] R.H. Kraichnan Diffusion by a random velocity field, Physics of Fluids, Volume 13 (1970), pp. 22-31

[37] A. Smirnov; S. Shi; I. Celik Random flow generation technique for large eddy simulations and particle-dynamics modeling, Trans. ASME Journal of Fluids Engineering, Volume 123 (2001), pp. 359-371

[38] M. Oschwald; M.M. Micci Spreading angle and centerline variation of density of supercritical nitrogen jets, Atomization and Sprays, Volume 11 (2002), pp. 91-106

[39] M. Juniper, Structure et stabilisation des flammes cryotechniques, Ph.D. thesis, Ecole Centrale de Paris, 2001

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The structure of multidimensional strained flames under transcritical conditions

L. Pons; N. Darabiha; S. Candel; ...

C. R. Méca (2009)


Large-Eddy Simulation of combustion instabilities in a variable-length combustor

Romain Garby; Laurent Selle; Thierry Poinsot

C. R. Méca (2013)


Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations

Yoann Méry; Layal Hakim; Philippe Scouflaire; ...

C. R. Méca (2013)