[Étude numérique et analytique du bruit de combustion indirect dans une tuyère]
Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experimental setup operated at DLR by Bake et al. (2008) where an entropy wave is generated upstream of the nozzle by means of an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate that the experiment is mostly driven by linear acoustic phenomena, including pressure wave reflection at the outlet and entropy-to-acoustic conversion in the accelerated regions. Results show that the acoustic impedance downstream of the nozzle must be accounted for appropriately in order to recover the experimental pressure signal. A good agreement is also obtained with a purely analytical assessment based on the Marble and Candel compact nozzle approximation.
L'évaluation du bruit indirect généré par une tuyère est effectuée de manière analytique et numérique. La configuration étudiée correspond à un dispositif expérimental du DLR exploité par Bake et al. (2008), dans lequel une onde d'entropie est produite en amont de la tuyère au moyen d'un dispositif de chauffage électrique. Des simulations 3-D et 2-D axisymétriques sont effectuées afin de montrer que l'expérience est principalement pilotée par des phénomènes acoustiques linéaires, comprenant les réflections acoustiques en sortie et la génération du bruit d'entropie. Les résultats montrent que l'impédance acoustique en aval de la tuyère doit être prise en compte de façon appropriée afin de retrouver le signal de pression expérimental. Un bon accord est obtenu avec un calcul purement analytique basé sur l'approximation de tuyère compacte de Marble et Candel.
Mots-clés : Combustion, Thermoacoustique, Bruit de combustion indirect, Simulations numériques
M. Leyko 1, 2 ; F. Nicoud 3 ; S. Moreau 4 ; T. Poinsot 5
@article{CRMECA_2009__337_6-7_415_0, author = {M. Leyko and F. Nicoud and S. Moreau and T. Poinsot}, title = {Numerical and analytical investigation of the indirect combustion noise in a nozzle}, journal = {Comptes Rendus. M\'ecanique}, pages = {415--425}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.025}, language = {en}, }
TY - JOUR AU - M. Leyko AU - F. Nicoud AU - S. Moreau AU - T. Poinsot TI - Numerical and analytical investigation of the indirect combustion noise in a nozzle JO - Comptes Rendus. Mécanique PY - 2009 SP - 415 EP - 425 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.025 LA - en ID - CRMECA_2009__337_6-7_415_0 ER -
M. Leyko; F. Nicoud; S. Moreau; T. Poinsot. Numerical and analytical investigation of the indirect combustion noise in a nozzle. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 415-425. doi : 10.1016/j.crme.2009.06.025. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.025/
[1] Separation of hydrodynamic, entropy, and combustion noise in a gas turbine combustor, AIAA J., Volume 16 (1978) no. 4, pp. 320-327
[2] The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proc. R. Soc. Lond., Volume 357 (1977), pp. 323-344
[3] G.F. Pickett, Core engine noise due to temperature fluctuations convecting through turbine blade rows, in: 2nd AIAA Aeroacoustics Conference, AIAA 1975-528, 1975
[4] M. Ihme, H. Pitsch, D. Bodony, Radiation of noise in turbulent non-premixed flames, in: Proc. of the Combustion Institute, 2008
[5] F. Bake, U. Michel, I. Rohle, C. Richter, F. Thiele, M. Liu, B. Noll, Indirect combustion noise generation in gas turbines, in: 11th AIAA/CEAS Aeroacoustics Conference, AIAA 2005-2830, 2005
[6] Investigation of entropy noise in aero-engine combustors, J. Eng. Gas Turbines Power, Volume 129 (2007) no. 2, pp. 370-376
[7] Fundamental mechanism of entropy noise in aero-engines: Experimental investigation, J. Eng. Gas Turbines Power, Volume 130 (2008) no. 1, p. 011202 (6 pp)
[8] Acoustic disturbances from gas nonuniformities convected through a nozzle, J. Sound Vib., Volume 55 (1977), pp. 225-243
[9] M. Leyko, F. Nicoud, T. Poinsot, Comparison of indirect and direct combustion noise in aircraft engines, in: 11th CEAS-ASC Workshop of X3-Noise, 2007
[10] The interaction of an isotropic field of acoustic waves with a shock wave, J. Fluid Mech., Volume 300 (1995), pp. 383-407
[11] The influence of entropy fluctuations on the interaction of turbulence with a shock, J. Fluid Mech., Volume 334 (1997), pp. 353-379
[12] The forced response of choke nozzles and supersonic diffusers, J. Fluid Mech., Volume 585 (2007), pp. 281-304
[13] AVBP Code: http://www.cerfacs.fr/cfd/avbp_code.php and http://www.cerfacs.fr/cfd/CFDPublications.html, 2008
[14] Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371
[15] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
[16] The actual impedance of non-reflecting boundary conditions: implications for the computation of resonators, AIAA J., Volume 42 (2004) no. 5, pp. 958-964
- Investigation on spray and flame stabilization of a LOX/methane swirl coaxial injector, Combustion and Flame, Volume 266 (2024), p. 113532 | DOI:10.1016/j.combustflame.2024.113532
- Impact of alternative fuel properties on combustion instabilities, noise, and vibrations, Aviation Fuels (2021), p. 219 | DOI:10.1016/b978-0-12-818314-4.00010-8
- Numerical Investigation of Influence of Entropy Wave on the Acoustic and Wall Heat Transfer Characteristics of a High-Pressure Turbine Guide Vane, Acoustics, Volume 2 (2020) no. 3, p. 524 | DOI:10.3390/acoustics2030028
- Numerical investigation on the generation, mixing and convection of entropic and compositional waves in a flow duct, Journal of Sound and Vibration, Volume 472 (2020), p. 115155 | DOI:10.1016/j.jsv.2019.115155
- Numerical Prediction of Far-Field Combustion Noise from Aeronautical Engines, Acoustics, Volume 1 (2019) no. 1, p. 174 | DOI:10.3390/acoustics1010012
- Thermo-acoustic cross-talk between cans in a can-annular combustor, International Journal of Spray and Combustion Dynamics, Volume 9 (2017) no. 4, p. 452 | DOI:10.1177/1756827717716373
- Coherent entropy induced and acoustic noise separation in compact nozzles, Journal of Sound and Vibration, Volume 394 (2017), p. 237 | DOI:10.1016/j.jsv.2017.01.012
- , 22nd AIAA/CEAS Aeroacoustics Conference (2016) | DOI:10.2514/6.2016-2747
- Indirect Combustion Noise Contributions in a Gas Turbine Model Combustor with a Choked Nozzle, Combustion Science and Technology, Volume 188 (2016) no. 4-5, p. 793 | DOI:10.1080/00102202.2016.1139374
- Sound emission of a turbine stage due to an azimuthally periodic mean temperature, International Journal of Aeroacoustics, Volume 15 (2016) no. 1-2, p. 162 | DOI:10.1177/1475472x15627408
- Combustion Instabilities in Lean Premixed Systems, Lean Combustion (2016), p. 231 | DOI:10.1016/b978-0-12-804557-2.00007-9
- Theoretical analysis of the mass balance equation through a flame at zero and non-zero Mach numbers, Combustion and Flame, Volume 162 (2015) no. 1, p. 60 | DOI:10.1016/j.combustflame.2014.06.017
- Combustion noise, Proceedings of the Combustion Institute, Volume 35 (2015) no. 1, p. 65 | DOI:10.1016/j.proci.2014.08.016
- An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum, Combustion and Flame, Volume 161 (2014) no. 5, p. 1374 | DOI:10.1016/j.combustflame.2013.11.014
- Simulation and modelling of the waves transmission and generation in a stator blade row in a combustion-noise framework, Journal of Sound and Vibration, Volume 333 (2014) no. 23, p. 6090 | DOI:10.1016/j.jsv.2014.06.034
- Analytical and Numerical Study of Combustion Noise Through a Subsonic Nozzle, AIAA Journal, Volume 51 (2013) no. 1, p. 42 | DOI:10.2514/1.j051528
- Thermoacoustic Shape Optimization of a Subsonic Nozzle, Journal of Engineering for Gas Turbines and Power, Volume 135 (2013) no. 10 | DOI:10.1115/1.4025038
- , 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2012) | DOI:10.2514/6.2012-207
- Analytical Analysis of Indirect Combustion Noise in Subcritical Nozzles, Journal of Engineering for Gas Turbines and Power, Volume 134 (2012) no. 11 | DOI:10.1115/1.4007318
- On the thermo-acoustic Fant equation, Journal of Sound and Vibration, Volume 331 (2012) no. 14, p. 3345 | DOI:10.1016/j.jsv.2012.03.014
- Large Eddy Simulations of gaseous flames in gas turbine combustion chambers, Progress in Energy and Combustion Science, Volume 38 (2012) no. 6, p. 782 | DOI:10.1016/j.pecs.2012.04.004
- Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock, Journal of Sound and Vibration, Volume 330 (2011) no. 16, p. 3944 | DOI:10.1016/j.jsv.2011.01.025
- , 16th AIAA/CEAS Aeroacoustics Conference (2010) | DOI:10.2514/6.2010-4032
- Indirect combustion noise, Journal of Fluid Mechanics, Volume 659 (2010), pp. 267-288 | DOI:10.1017/s0022112010002466 | Zbl:1205.76239
Cité par 24 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier