Comptes Rendus
Numerical and analytical investigation of the indirect combustion noise in a nozzle
[Étude numérique et analytique du bruit de combustion indirect dans une tuyère]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 415-425.

L'évaluation du bruit indirect généré par une tuyère est effectuée de manière analytique et numérique. La configuration étudiée correspond à un dispositif expérimental du DLR exploité par Bake et al. (2008), dans lequel une onde d'entropie est produite en amont de la tuyère au moyen d'un dispositif de chauffage électrique. Des simulations 3-D et 2-D axisymétriques sont effectuées afin de montrer que l'expérience est principalement pilotée par des phénomènes acoustiques linéaires, comprenant les réflections acoustiques en sortie et la génération du bruit d'entropie. Les résultats montrent que l'impédance acoustique en aval de la tuyère doit être prise en compte de façon appropriée afin de retrouver le signal de pression expérimental. Un bon accord est obtenu avec un calcul purement analytique basé sur l'approximation de tuyère compacte de Marble et Candel.

Analytical and numerical assessments of the indirect noise generated through a nozzle are presented. The configuration corresponds to an experimental setup operated at DLR by Bake et al. (2008) where an entropy wave is generated upstream of the nozzle by means of an electrical heating device. Both 3-D and 2-D axisymmetric simulations are performed to demonstrate that the experiment is mostly driven by linear acoustic phenomena, including pressure wave reflection at the outlet and entropy-to-acoustic conversion in the accelerated regions. Results show that the acoustic impedance downstream of the nozzle must be accounted for appropriately in order to recover the experimental pressure signal. A good agreement is also obtained with a purely analytical assessment based on the Marble and Candel compact nozzle approximation.

Publié le :
DOI : 10.1016/j.crme.2009.06.025
Keywords: Combustion, Thermoacoustic, Indirect combustion noise, Numerical simulations
Mot clés : Combustion, Thermoacoustique, Bruit de combustion indirect, Simulations numériques
M. Leyko 1, 2 ; F. Nicoud 3 ; S. Moreau 4 ; T. Poinsot 5

1 SNECMA Villaroche, 77550 Moissey-Cramayel, France
2 CERFACS, 42, avenue Coriolis, 31057 Toulouse, France
3 Applied mathematics, Université Montpellier II, France
4 GAUS, Faculté de Génie, Université de Sherbrooke, Canada
5 CNRS, Institut de mécanique des fluides, Toulouse, France
@article{CRMECA_2009__337_6-7_415_0,
     author = {M. Leyko and F. Nicoud and S. Moreau and T. Poinsot},
     title = {Numerical and analytical investigation of the indirect combustion noise in a nozzle},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {415--425},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.025},
     language = {en},
}
TY  - JOUR
AU  - M. Leyko
AU  - F. Nicoud
AU  - S. Moreau
AU  - T. Poinsot
TI  - Numerical and analytical investigation of the indirect combustion noise in a nozzle
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 415
EP  - 425
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.025
LA  - en
ID  - CRMECA_2009__337_6-7_415_0
ER  - 
%0 Journal Article
%A M. Leyko
%A F. Nicoud
%A S. Moreau
%A T. Poinsot
%T Numerical and analytical investigation of the indirect combustion noise in a nozzle
%J Comptes Rendus. Mécanique
%D 2009
%P 415-425
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.025
%G en
%F CRMECA_2009__337_6-7_415_0
M. Leyko; F. Nicoud; S. Moreau; T. Poinsot. Numerical and analytical investigation of the indirect combustion noise in a nozzle. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 415-425. doi : 10.1016/j.crme.2009.06.025. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.025/

[1] M. Muthukrishnan; W. Strahle; D. Neale Separation of hydrodynamic, entropy, and combustion noise in a gas turbine combustor, AIAA J., Volume 16 (1978) no. 4, pp. 320-327

[2] N. Cumpsty; F. Marble The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise, Proc. R. Soc. Lond., Volume 357 (1977), pp. 323-344

[3] G.F. Pickett, Core engine noise due to temperature fluctuations convecting through turbine blade rows, in: 2nd AIAA Aeroacoustics Conference, AIAA 1975-528, 1975

[4] M. Ihme, H. Pitsch, D. Bodony, Radiation of noise in turbulent non-premixed flames, in: Proc. of the Combustion Institute, 2008

[5] F. Bake, U. Michel, I. Rohle, C. Richter, F. Thiele, M. Liu, B. Noll, Indirect combustion noise generation in gas turbines, in: 11th AIAA/CEAS Aeroacoustics Conference, AIAA 2005-2830, 2005

[6] F. Bake; U. Michel; I. Röhle Investigation of entropy noise in aero-engine combustors, J. Eng. Gas Turbines Power, Volume 129 (2007) no. 2, pp. 370-376

[7] F. Bake; N. Kings; I. Röhle Fundamental mechanism of entropy noise in aero-engines: Experimental investigation, J. Eng. Gas Turbines Power, Volume 130 (2008) no. 1, p. 011202 (6 pp)

[8] F. Marble; S. Candel Acoustic disturbances from gas nonuniformities convected through a nozzle, J. Sound Vib., Volume 55 (1977), pp. 225-243

[9] M. Leyko, F. Nicoud, T. Poinsot, Comparison of indirect and direct combustion noise in aircraft engines, in: 11th CEAS-ASC Workshop of X3-Noise, 2007

[10] K. Mahesh; S. Lee; S. Lele; P. Moin The interaction of an isotropic field of acoustic waves with a shock wave, J. Fluid Mech., Volume 300 (1995), pp. 383-407

[11] K. Mahesh; S. Lele; P. Moin The influence of entropy fluctuations on the interaction of turbulence with a shock, J. Fluid Mech., Volume 334 (1997), pp. 353-379

[12] W. Moase; M. Brear; C. Manzie The forced response of choke nozzles and supersonic diffusers, J. Fluid Mech., Volume 585 (2007), pp. 281-304

[13] AVBP Code: http://www.cerfacs.fr/cfd/avbp_code.php and http://www.cerfacs.fr/cfd/CFDPublications.html, 2008

[14] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371

[15] T. Poinsot; S. Lele Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129

[16] L. Selle; F. Nicoud; T. Poinsot The actual impedance of non-reflecting boundary conditions: implications for the computation of resonators, AIAA J., Volume 42 (2004) no. 5, pp. 958-964

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades

Ignacio Duran; Matthieu Leyko; Stéphane Moreau; ...

C. R. Méca (2013)


Injection coupling with high amplitude transverse modes: Experimentation and simulation

Yoann Mery; Sébastien Ducruix; Philippe Scouflaire; ...

C. R. Méca (2009)


Large-Eddy Simulation of combustion instabilities in a variable-length combustor

Romain Garby; Laurent Selle; Thierry Poinsot

C. R. Méca (2013)