[Effets de la mouillabilité sur l'ébullition en vase]
Cette étude a pour objectif d'étudier les effets de la mouillabilité sur l'ébullition en vase. L'angle de contact du fluide a été modifié par revêtement de nanoparticules sur des surfaces de test. Les résultats expérimentaux obtenus ne sont pas en accord avec les modèles classiques. Une nouvelle approche physique de l'influence de la mouillabilité sur l'ébullition en vase a été établie. Dans cette approche, nous introduisons les notions des macro- et micro-angles de contact afin d'expliquer les phénomènes observés.
Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20° to 110° by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon.
Accepté le :
Publié le :
Mots-clés : Transferts thermiques, Mouillabilité, Ébullition, Angle de contact, Revêtement nanostructuré
Hai Trieu Phan 1, 2 ; Nadia Caney 2 ; Philippe Marty 2 ; Stéphane Colasson 1 ; Jérôme Gavillet 3
@article{CRMECA_2009__337_5_251_0, author = {Hai Trieu Phan and Nadia Caney and Philippe Marty and St\'ephane Colasson and J\'er\^ome Gavillet}, title = {How does surface wettability influence nucleate boiling?}, journal = {Comptes Rendus. M\'ecanique}, pages = {251--259}, publisher = {Elsevier}, volume = {337}, number = {5}, year = {2009}, doi = {10.1016/j.crme.2009.06.032}, language = {en}, }
TY - JOUR AU - Hai Trieu Phan AU - Nadia Caney AU - Philippe Marty AU - Stéphane Colasson AU - Jérôme Gavillet TI - How does surface wettability influence nucleate boiling? JO - Comptes Rendus. Mécanique PY - 2009 SP - 251 EP - 259 VL - 337 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2009.06.032 LA - en ID - CRMECA_2009__337_5_251_0 ER -
%0 Journal Article %A Hai Trieu Phan %A Nadia Caney %A Philippe Marty %A Stéphane Colasson %A Jérôme Gavillet %T How does surface wettability influence nucleate boiling? %J Comptes Rendus. Mécanique %D 2009 %P 251-259 %V 337 %N 5 %I Elsevier %R 10.1016/j.crme.2009.06.032 %G en %F CRMECA_2009__337_5_251_0
Hai Trieu Phan; Nadia Caney; Philippe Marty; Stéphane Colasson; Jérôme Gavillet. How does surface wettability influence nucleate boiling?. Comptes Rendus. Mécanique, Volume 337 (2009) no. 5, pp. 251-259. doi : 10.1016/j.crme.2009.06.032. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.032/
[1] Maximum volume of vapour bubbles, Phys. Z., Volume 36 (1935), pp. 379-384
[2] Effect of surface wettability on active nucleate site density during pool boiling of water on a vertical surface, Trans. ASME J. Heat Transfer, Volume 115 (1993), pp. 670-679
[3] A theoretical model to predict pool boiling FC incorporating effects of contact angle and orientation, J. Heat Transfer, Volume 123 (2001), pp. 1071-1079
[4] B. Truong, L.W. Hu, J. Buongiorno, Surface modifications using nanofluids for nucleate boiling heat transfer, ICNMM2008-62085, Darmstadt, Germany, 2008
[5] Dynamics of vapour bubbles in nucleate boiling, Int. J. Heat Mass Transfer, Volume 39 (1996), pp. 2409-2426
[6] Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions, Int. J. Heat Mass Transfer, Volume 45 (2002), pp. 1739-1747
[7] The role of surface conditions in nucleate boiling, Chem. Eng. Prog. Symp. Ser., Volume 56 (1960), pp. 49-63
[8] R.F. Gaertner, Methods and means for increasing the heat transfer coefficient between a wall and boiling liquid, U.S. Patent 3,301,314 (1967)
[9] R.L. Hummel, Means for increasing the heat transfer coefficient between a wall and boiling liquid, U.S. Patent 3,207,209 (1965)
[10] Evaluation of constants for the Rohsenow pool-boiling correlation, J. Heat Transfer, Volume 90 (1968), pp. 239-247
[11] Nanofluid boiling: The effect of surface wettability, Int. J. Heat Mass Transfer, Volume 29 (2008), pp. 1577-1585
[12] Effect of surface wettability on boiling and evaporation, Energy, Volume 30 (2005), pp. 209-220
[13] Formation of a liquid jet after detachment of a vapour bubble, Int. J. Heat Mass Transfer, Volume 40 (1997), pp. 4309-4317
[14] Ebullition from solid surfaces in the absence of a pre-existing gaseous phase, Trans. Am. Mech. Eng., Volume 79 (1957), pp. 735-740
[15] Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Appl. Phys. Lett., Volume 91 (2007), p. 014104
- Molecular Dynamics Analysis of Contact Line Depinning on Bubble Growth on the Wall Surface with Nano-Scaled Roughness., JAPANESE JOURNAL OF MULTIPHASE FLOW, Volume 39 (2025) no. 1, p. 97 | DOI:10.3811/jjmf.2025.008
- Analysis of wettability effects on thermal performance of vapor chamber with a hybrid lattice Boltzmann method, International Journal of Heat and Mass Transfer, Volume 225 (2024), p. 125315 | DOI:10.1016/j.ijheatmasstransfer.2024.125315
- Effect of curvature on bubble dynamics and associated heat transfer characteristics for nucleate pool boiling from a hydrophilic curved surface, International Journal of Numerical Methods for Heat Fluid Flow, Volume 34 (2024) no. 9, p. 3569 | DOI:10.1108/hff-02-2024-0134
- Phase Transition Heat Transfer Enhancement of a Graphene-Coated Microporous Copper Surface Using Two-Step Electrodeposition Method, Journal of Thermal Science and Engineering Applications, Volume 16 (2024) no. 7 | DOI:10.1115/1.4065358
- Measuring subcooled boiling heat transfer on a CuCrZr surface to predict durability of a heat sink material for plasma-facing components, Fusion Engineering and Design, Volume 194 (2023), p. 113867 | DOI:10.1016/j.fusengdes.2023.113867
- Pool boiling heat transfer enhancement and bubble visualization on a microporous copper over CuO filmed surface through combination of chemical etching and electrochemical deposition, International Communications in Heat and Mass Transfer, Volume 144 (2023), p. 106740 | DOI:10.1016/j.icheatmasstransfer.2023.106740
- Molecular dynamics analysis for the effect of the wettability and the slip on the solid wall surface on bubble growth, Transactions of the JSME (in Japanese), Volume 89 (2023) no. 927, p. 22-00320 | DOI:10.1299/transjsme.22-00320
- Distinct features of chemically patterned surfaces for boiling heat transfer enhancement, Volume 54 (2022), p. 241 | DOI:10.1016/bs.aiht.2022.07.003
- Local phase and thermal behaviors in pool boiling on different wettability surfaces, Experimental Thermal and Fluid Science, Volume 139 (2022), p. 110728 | DOI:10.1016/j.expthermflusci.2022.110728
- A molecular dynamics investigation of boiling heat transfer over wettability thermo-responsive surface, International Journal of Heat and Mass Transfer, Volume 191 (2022), p. 122856 | DOI:10.1016/j.ijheatmasstransfer.2022.122856
- Heat transfer, dynamic characteristics and disturbance to water of bubbles generated on vertical surfaces featuring extreme wettability patterns, International Journal of Heat and Mass Transfer, Volume 196 (2022), p. 123266 | DOI:10.1016/j.ijheatmasstransfer.2022.123266
- A Theoretical Model to Predict Pool Boiling Critical Heat Flux for Micro/Nano-Structured Surfaces, Journal of Heat Transfer, Volume 144 (2022) no. 10 | DOI:10.1115/1.4054899
- Thermodynamic analysis of entropy generation due to energy transfer through circular surfaces under pool boiling condition, Journal of Thermal Analysis and Calorimetry, Volume 147 (2022) no. 3, p. 2495 | DOI:10.1007/s10973-021-10561-4
- Boiling heat transfer characteristics of bionic flower bud structure microchannels, Korean Journal of Chemical Engineering, Volume 39 (2022) no. 12, p. 3246 | DOI:10.1007/s11814-022-1256-3
- Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit, Nanomaterials, Volume 12 (2022) no. 16, p. 2772 | DOI:10.3390/nano12162772
- Design of separate-effects In-Pile transient boiling experiments at the TREAT Facility, Nuclear Engineering and Design, Volume 397 (2022), p. 111919 | DOI:10.1016/j.nucengdes.2022.111919
- Research Progress on Influence of Surface Properties on Boiling Heat Transfer, Nuclear Science and Technology, Volume 10 (2022) no. 01, p. 1 | DOI:10.12677/nst.2022.101001
- Intensification of heat transfer in the zone of the thermosyphon evaporator when changing the boiling surface shape, Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series, Volume 67 (2022) no. 1, p. 49 | DOI:10.29235/1561-8358-2022-67-1-49-56
- Effects of modified surface on flow and heat transfer of heat pipe, The European Physical Journal Plus, Volume 137 (2022) no. 3 | DOI:10.1140/epjp/s13360-022-02532-x
- Coating engineering for boiling heat transfer toward immersion cooling, Volume 53 (2021), p. 97 | DOI:10.1016/bs.aiht.2021.06.002
- Experimental and semi-analytical investigation of heat transfer in nucleate pool boiling by considering surface structuring methods, Experimental Heat Transfer, Volume 34 (2021) no. 4, p. 293 | DOI:10.1080/08916152.2020.1743385
- Pool Boiling of NOVEC-649 on Microparticle-Coated and Nanoparticle-Coated Surfaces, Heat Transfer Engineering, Volume 42 (2021) no. 19-20, p. 1732 | DOI:10.1080/01457632.2020.1818419
- Effect of heated surface inclination on the growth dynamics and detachment of a vapor bubble, a numerical study, Heat and Mass Transfer, Volume 57 (2021) no. 2, p. 205 | DOI:10.1007/s00231-020-02937-3
- Bubble nucleation on grooved surfaces with hybrid wettability: Molecular dynamics study under a transient temperature boundary condition, International Journal of Heat and Mass Transfer, Volume 166 (2021), p. 120752 | DOI:10.1016/j.ijheatmasstransfer.2020.120752
- Bubble dynamics and mechanistic boiling heat transfer prediction on a scored copper surface, Journal of Physics: Conference Series, Volume 2116 (2021) no. 1, p. 012009 | DOI:10.1088/1742-6596/2116/1/012009
- Laser Surface Engineering for Boiling Heat Transfer Applications, Materials with Extreme Wetting Properties (2021), p. 245 | DOI:10.1007/978-3-030-59565-4_12
- Robust Hybrid Hydrophilic Coating on a High-Density Polyethylene Surface with Enhanced Mechanical Property, ACS Applied Materials Interfaces, Volume 12 (2020) no. 28, p. 32017 | DOI:10.1021/acsami.0c09116
- Pool boiling heat transfer of HFE-7100 on metal foams, Experimental Thermal and Fluid Science, Volume 113 (2020), p. 110025 | DOI:10.1016/j.expthermflusci.2019.110025
- Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b, Heat and Mass Transfer, Volume 56 (2020) no. 12, p. 3273 | DOI:10.1007/s00231-020-02922-w
- Effect of copper foam thickness on pool boiling heat transfer of HFE-7100, International Journal of Heat and Mass Transfer, Volume 152 (2020), p. 119547 | DOI:10.1016/j.ijheatmasstransfer.2020.119547
- Pattern geometry optimization on superbiphilic aluminum surfaces for enhanced pool boiling heat transfer, International Journal of Heat and Mass Transfer, Volume 161 (2020), p. 120265 | DOI:10.1016/j.ijheatmasstransfer.2020.120265
- Face-centred cubic CuO nanocrystals for enhanced pool-boiling critical heat flux and higher thermal conductivities, International Journal of Heat and Mass Transfer, Volume 162 (2020), p. 120391 | DOI:10.1016/j.ijheatmasstransfer.2020.120391
- Molecular Dynamics Simulation of Ultra-Fast Phase Transition in Water Nanofilms, Journal of Heat Transfer, Volume 142 (2020) no. 11 | DOI:10.1115/1.4047642
- Surface wettability enhancement on oxide film coated-steels due to gamma-ray irradiation, Mechanical Engineering Journal, Volume 7 (2020) no. 3, p. 19-00585 | DOI:10.1299/mej.19-00585
- Acoustic Bubble Suppression by Constructing a Hydrophilic Coating on HDPE Surface, ACS Applied Materials Interfaces, Volume 11 (2019) no. 18, p. 16944 | DOI:10.1021/acsami.9b04038
- Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition, Applied Energy, Volume 249 (2019), p. 286 | DOI:10.1016/j.apenergy.2019.04.160
- An analysis of pool boiling heat transfer on nanoparticle-coated surfaces, Energy Procedia, Volume 158 (2019), p. 5880 | DOI:10.1016/j.egypro.2019.01.537
- Novel sensor for local analysis of bubble dynamics at low pressure, Experimental Thermal and Fluid Science, Volume 104 (2019), p. 175 | DOI:10.1016/j.expthermflusci.2019.02.019
- Review of pool boiling enhancement by surface modification, International Journal of Heat and Mass Transfer, Volume 128 (2019), p. 892 | DOI:10.1016/j.ijheatmasstransfer.2018.09.026
- Pool boiling of HFE-7200 on nanoparticle-coating surfaces: Experiments and heat transfer analysis, International Journal of Heat and Mass Transfer, Volume 133 (2019), p. 548 | DOI:10.1016/j.ijheatmasstransfer.2018.12.140
- Experimental and numerical study on bubble dynamics and heat transfer during nucleate boiling of FC-72, International Journal of Heat and Mass Transfer, Volume 139 (2019), p. 822 | DOI:10.1016/j.ijheatmasstransfer.2019.05.061
- Microlayer formation and depletion beneath growing steam bubbles, International Journal of Multiphase Flow, Volume 111 (2019), p. 241 | DOI:10.1016/j.ijmultiphaseflow.2018.11.004
- Electrophoretic deposition surfaces to enhance HFE-7200 pool boiling heat transfer and critical heat flux, International Journal of Thermal Sciences, Volume 146 (2019), p. 106107 | DOI:10.1016/j.ijthermalsci.2019.106107
- Boiling Heat Transfer and Critical Heat Flux Enhancement Using Electrophoretic Deposition of SiO2 Nanofluid, Science and Technology of Nuclear Installations, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/1272156
- Influence of wettability on pressure-driven bubble nucleation: A potential method for dissolved gas separation, Separation and Purification Technology, Volume 217 (2019), p. 31 | DOI:10.1016/j.seppur.2019.02.005
- Dynamic wettability evaluation of nanoparticles-coated surfaces, Experimental Thermal and Fluid Science, Volume 92 (2018), p. 231 | DOI:10.1016/j.expthermflusci.2017.11.025
- Hydrodynamics of nucleate boiling on downward surface with various orientation. Part I: Departure diameter, frequency, and escape speed of the slug, International Journal of Heat and Mass Transfer, Volume 116 (2018), p. 1341 | DOI:10.1016/j.ijheatmasstransfer.2017.07.041
- Electron beam irradiation effect on critical heat flux in downward-facing flow boiling, International Journal of Heat and Mass Transfer, Volume 120 (2018), p. 300 | DOI:10.1016/j.ijheatmasstransfer.2017.12.055
- Experimental Investigation on the Effect of Size and Pitch of Hydrophobic Square Patterns on the Pool Boiling Heat Transfer Performance of Cylindrical Copper Surface, Inventions, Volume 3 (2018) no. 1, p. 15 | DOI:10.3390/inventions3010015
- Editors' Choice—Critical Review—Mathematical Formulations of Electrochemically Gas-Evolving Systems, Journal of The Electrochemical Society, Volume 165 (2018) no. 13, p. E694 | DOI:10.1149/2.0791813jes
- Heat transfer enhancement of a loop thermosyphon with a hydrophobic spot-coated surface, Journal of Thermal Science and Technology, Volume 13 (2018) no. 1, p. JTST0011 | DOI:10.1299/jtst.2018jtst0011
- Liquid/surface interaction during pool boiling of DI-water on nanocoated heating surfaces, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 40 (2018) no. 11 | DOI:10.1007/s40430-018-1436-6
- , 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2017), p. 759 | DOI:10.1109/itherm.2017.7992562
- A continuum approach to study vapor vaporization within textured surface, Advances in Mechanical Engineering, Volume 9 (2017) no. 4 | DOI:10.1177/1687814017696411
- Potential impact of accident tolerant fuel cladding critical heat flux characteristics on the high temperature phase of reactivity initiated accidents, Annals of Nuclear Energy, Volume 110 (2017), p. 48 | DOI:10.1016/j.anucene.2017.06.016
- The role of surface energy in heterogeneous bubble growth on ideal surface, International Journal of Heat and Mass Transfer, Volume 108 (2017), p. 1901 | DOI:10.1016/j.ijheatmasstransfer.2016.10.005
- Single bubble dynamics during subcooled nucleate boiling on a vertical heater surface: An experimental analysis of the effects of surface characteristics, International Journal of Heat and Mass Transfer, Volume 109 (2017), p. 907 | DOI:10.1016/j.ijheatmasstransfer.2017.02.017
- Eulerian–Eulerian simulation of non-uniform magnetic field effects on the ferrofluid nucleate pool boiling, Journal of Engineering Thermophysics, Volume 26 (2017) no. 4, p. 580 | DOI:10.1134/s1810232817040129
- A numerical investigation of the effect of surface wettability on the boiling curve, PLOS ONE, Volume 12 (2017) no. 11, p. e0187175 | DOI:10.1371/journal.pone.0187175
- Nucleate pool boiling of R134a on cold sprayed Cu–CNT–SiC and Cu–CNT–AlN composite coatings, Applied Thermal Engineering, Volume 103 (2016), p. 684 | DOI:10.1016/j.applthermaleng.2016.04.022
- State of the art of efficient pumped two-phase flow cooling technologies, Applied Thermal Engineering, Volume 104 (2016), p. 333 | DOI:10.1016/j.applthermaleng.2016.05.061
- Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate, Applied Thermal Engineering, Volume 99 (2016), p. 61 | DOI:10.1016/j.applthermaleng.2015.12.081
- Confined characteristics of bubble during boiling in microchannel, Experimental Thermal and Fluid Science, Volume 74 (2016), p. 247 | DOI:10.1016/j.expthermflusci.2015.12.016
- Influence of oil concentration on wetting behavior during evaporation of refrigerant–oil mixture on copper surface, International Journal of Refrigeration, Volume 61 (2016), p. 23 | DOI:10.1016/j.ijrefrig.2015.09.001
- Sustaining Superheated Liquid within Hydrophilic Surface Texture, Langmuir, Volume 32 (2016) no. 48, p. 12947 | DOI:10.1021/acs.langmuir.6b02665
- Copper nanowire arrays surface wettability control using atomic layer deposition of TiO2, Russian Journal of Applied Chemistry, Volume 89 (2016) no. 8, p. 1265 | DOI:10.1134/s1070427216080085
- Influence of surface topography in the boiling mechanisms, International Journal of Heat and Fluid Flow, Volume 52 (2015), p. 50 | DOI:10.1016/j.ijheatfluidflow.2014.11.003
- A mathematic model considering the effect of Brownian motion for subcooled nucleate pool boiling of dilute nanofluids, International Journal of Heat and Mass Transfer, Volume 84 (2015), p. 46 | DOI:10.1016/j.ijheatmasstransfer.2015.01.009
- Bubble dynamics and heat transfer on a wettability patterned surface, International Journal of Heat and Mass Transfer, Volume 88 (2015), p. 544 | DOI:10.1016/j.ijheatmasstransfer.2015.04.086
- Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces, International Journal of Heat and Mass Transfer, Volume 89 (2015), p. 1297 | DOI:10.1016/j.ijheatmasstransfer.2015.06.013
- Experimental study on the stagnation line heat transfer characteristics with high-velocity free slot jet impingement boiling, International Journal of Heat and Mass Transfer, Volume 91 (2015), p. 282 | DOI:10.1016/j.ijheatmasstransfer.2015.07.114
- On two-fluid modeling of nucleate boiling of dilute nanofluids, International Journal of Heat and Mass Transfer, Volume 69 (2014), p. 443 | DOI:10.1016/j.ijheatmasstransfer.2013.10.037
- Towards a unified treatment of fully flashing sprays, International Journal of Multiphase Flow, Volume 58 (2014), p. 168 | DOI:10.1016/j.ijmultiphaseflow.2013.08.010
- Nucleate boiling of dilute nanofluids – Mechanism exploring and modeling, International Journal of Thermal Sciences, Volume 84 (2014), p. 323 | DOI:10.1016/j.ijthermalsci.2014.05.021
- Surface engineering for phase change heat transfer: A review, MRS Energy Sustainability, Volume 1 (2014) no. 1 | DOI:10.1557/mre.2014.9
- Pool Boiling of Micro-/Nanoparticles Modified Aluminum Surface, Advances in Materials Science and Engineering, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/258241
- Capillary evaporation on micromembrane-enhanced microchannel wicks with atomic layer deposited silica, Applied Physics Letters, Volume 103 (2013) no. 15 | DOI:10.1063/1.4824439
- Characterization of pool boiling mechanisms over micro-patterned surfaces using PIV, International Journal of Heat and Mass Transfer, Volume 66 (2013), p. 261 | DOI:10.1016/j.ijheatmasstransfer.2013.07.033
- Bubble size distribution in flow boiling of aqueous boric acid under high pressure, Nuclear Engineering and Design, Volume 262 (2013), p. 562 | DOI:10.1016/j.nucengdes.2013.06.006
- Fast photo-switchable surfaces for boiling heat transfer applications, Applied Physics Letters, Volume 101 (2012) no. 19 | DOI:10.1063/1.4766345
- A model to predict the effect of surface wettability on critical heat flux, International Communications in Heat and Mass Transfer, Volume 39 (2012) no. 10, p. 1500 | DOI:10.1016/j.icheatmasstransfer.2012.10.019
- Thermohydrodynamics of boiling in a van der Waals fluid, Physical Review E, Volume 85 (2012) no. 2 | DOI:10.1103/physreve.85.026320
- Controlled Effect of Ultrasonic Cavitation on Hydrophobic/Hydrophilic Surfaces, ACS Applied Materials Interfaces, Volume 3 (2011) no. 2, p. 417 | DOI:10.1021/am101006x
- Influence of nanoparticle surface coating on pool boiling, Experimental Thermal and Fluid Science, Volume 35 (2011) no. 7, p. 1239 | DOI:10.1016/j.expthermflusci.2011.04.011
- A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling, International Communications in Heat and Mass Transfer, Volume 37 (2010) no. 8, p. 964 | DOI:10.1016/j.icheatmasstransfer.2010.06.024
- A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux (CHF) During Saturated Flow Boiling in Microchannels and Minichannels, Journal of Heat Transfer, Volume 132 (2010) no. 8 | DOI:10.1115/1.4001124
Cité par 86 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier