Comptes Rendus
Cavitation in water: a review
[Cavitation dans l'eau : revue]
Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1000-1017.

L'eau liquide peut être amenée au-delà de la ligne d'équilibre liquide–vapeur jusque dans un état métastable, avant que la nucléation de bulles (cavitation) n'intervienne. Nous passons en revue les travaux expérimentaux sur la cavitation dans l'eau, en mettant l'accent sur la détermination du degré de métastabilité extrême auquel l'eau liquide peut exister. Nous présentons également des applications pratiques de la métastabilité et de la cavitation.

Liquid water can be brought beyond the liquid–vapor equilibrium line into a metastable state, before nucleation of bubbles (cavitation) occurs. We review the experimental work on cavitation in water, focusing on the determination of the ultimate degree of metastability at which liquid water can exist. We also present practical applications of metastability and cavitation.

Publié le :
DOI : 10.1016/j.crhy.2006.10.015
Keywords: Water, Metastability, Superheated liquid, Stretched liquid, Cavitation
Mot clés : Eau, Métastabilité, Liquide surchauffé, Liquide sous tension, Cavitation
Frédéric Caupin 1 ; Eric Herbert 1

1 Laboratoire de Physique Statistique de l'École Normale Supérieure, associé aux Universités Paris 6 et 7 et au CNRS, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRPHYS_2006__7_9-10_1000_0,
     author = {Fr\'ed\'eric Caupin and Eric Herbert},
     title = {Cavitation in water: a review},
     journal = {Comptes Rendus. Physique},
     pages = {1000--1017},
     publisher = {Elsevier},
     volume = {7},
     number = {9-10},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.015},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Caupin
AU  - Eric Herbert
TI  - Cavitation in water: a review
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 1000
EP  - 1017
VL  - 7
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.015
LA  - en
ID  - CRPHYS_2006__7_9-10_1000_0
ER  - 
%0 Journal Article
%A Frédéric Caupin
%A Eric Herbert
%T Cavitation in water: a review
%J Comptes Rendus. Physique
%D 2006
%P 1000-1017
%V 7
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2006.10.015
%G en
%F CRPHYS_2006__7_9-10_1000_0
Frédéric Caupin; Eric Herbert. Cavitation in water: a review. Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1000-1017. doi : 10.1016/j.crhy.2006.10.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.015/

[1] R.C. Reid Superheated liquids, Amer. Sci., Volume 64 (1976), pp. 146-156

[2] D.H. Trevena Cavitation and Tension in Liquids, Adam Hilger, Bristol, Philadelphia, 1987

[3] C.T. Avedisian The homogeneous nucleation limits of liquids, J. Phys. Chem. Ref. Data, Volume 14 (1985), pp. 695-729

[4] P.G. Debenedetti Metastable Liquids, Princeton Univ. Press, Princeton, NJ, 1996

[5] T.G. Leighton The Acoustic Bubble, Academic Press, London, 1994

[6] C.E. Brennen Cavitation and Bubble Dynamics, Oxford Univ. Press, New York, 1995 http://resolver.caltech.edu/CaltechBOOK:1995.001 (also available at)

[7] J.-P. Franc; J.-M. Michel Fundamentals of Cavitation, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004

[8] F.R. Young Cavitation, Imperial College Press, London, 1999

[9] D.W. Oxtoby Homogeneous nucleation: theory and experiment, J. Phys.: Condens. Matter, Volume 4 (1992), pp. 7627-7650

[10] H.J. Maris, Theory of nucleation, C. R. Physique, this issue, | DOI

[11] J.C. Fisher The fracture of liquids, J. Appl. Phys., Volume 19 (1948), pp. 1062-1067

[12] S. Balibar, F. Caupin, Nucleation of crystals from their liquid phase, C. R. Physique, | DOI

[13] M.S. Pettersen; S. Balibar; H.J. Maris Experimental investigation of cavitation in superfluid 4He, Phys. Rev. B, Volume 49 (1994), pp. 12062-12070

[14] J.W. Cahn; J.E. Hilliard Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., Volume 31 (1959), pp. 688-699

[15] F. Caupin Liquid–vapor interface, cavitation, and the phase diagram of water, Phys. Rev. E, Volume 71 (2005) no. 1–5, p. 051605

[16] R.J. Speedy Stability-limit conjecture. An interpretation of the properties of water, J. Phys. Chem., Volume 86 (1982), pp. 982-991

[17] F. Caupin; S. Balibar; H.J. Maris Anomaly in the stability limit of liquid helium 3, Phys. Rev. Lett., Volume 87 (2001) 145302 (1–4)

[18] P.H. Poole; F. Sciortino; U. Essmann; H.E. Stanley Spinodal of liquid water, Phys. Rev. E, Volume 48 (1993), pp. 3799-3817

[19] P.A. Netz; F.W. Starr; H.E. Stanley; M.C. Barbosa Static and dynamic properties of stretched water, J. Chem. Phys., Volume 115 (2001), pp. 344-348

[20] M. Yamada; S. Mossa; H.E. Stanley; F. Sciortino Interplay between time–temperature transformation and the liquid–liquid phase transition in water, Phys. Rev. Lett., Volume 88 (2002) 195701 (1–4)

[21] P.G. Debenedetti Supercooled and glassy water, J. Phys.: Condens. Matter, Volume 15 (2003), p. R1669-R1726

[22] J.-A. De Luc, Introduction à la physique terrestre par les fluides expansibles, Paris, 1803, p. 93

[23] F. Donny Mémoire sur la cohésion des liquides, et sur leur adhérence aux corps solides, Ann. Chim. Phys., Volume 16 (1846), pp. 167-190

[24] F.B. Kenrick; C.S. Gilbert; K.L. Wismer The superheating of liquids, J. Phys. Chem., Volume 28 (1924), pp. 1297-1307

[25] L.J. Briggs Maximum superheating of water as a measure of negative pressure, J. Appl. Phys., Volume 26 (1955), pp. 1001-1003

[26] G.J. Brereton; R.J. Crilly; J.R. Spears Nucleation in small capillary tubes, Chem. Phys., Volume 230 (1998), pp. 253-265

[27] M.L. Dufour; M.L. Dufour Sur l'ébullition des liquides, C. R. Acad. Sci., Volume 52 (1861), pp. 986-989

[28] G.R. Moore Vaporization of superheated drops in liquids, AIChE J., Volume 5 (1959), pp. 458-466

[29] H. Wakeshima; K. Takata On the limit of superheat, J. Phys. Soc. Japan, Volume 13 (1958), pp. 1398-1403

[30] R.E. Apfel Vapor nucleation at a liquid–liquid interface, J. Chem. Phys., Volume 54 (1971), pp. 62-63

[31] M. Blander; D. Hengstenberg; J.L. Katz Bubble nucleation in n-pentane, n-hexane, n-pentane + hexadecane mixtures, and water, J. Phys. Chem., Volume 75 (1971), pp. 3613-3619

[32] R.E. Apfel Water superheated to 279.5 °C at atmospheric pressure, Nature Phys. Sci., Volume 238 (1972), pp. 63-64

[33] P.A. Pavlov; V.P. Skripov Kinetics of spontaneous nucleation in strongly heated liquids, High Temp. (USSR), Volume 8 (1970), pp. 540-545 (translated from Teplofiz. Vys. Temp., 8, 1970, pp. 579-585)

[34] V.P. Skripov; P.A. Pavlov Explosive boiling of liquids and fluctuation nucleus formation, High Temp. (USSR), Volume 8 (1970), pp. 782-787 (translated from Teplofiz. Vys. Temp., 8, 1970, pp. 833-839)

[35] K.P. Derewnicki Experimental studies of heat transfer and vapour formation in fast transient boiling, Int. J. Heat. Mass Trans., Volume 28 (1985), pp. 2085-2092

[36] S. Glod; D. Poulikakos; Z. Zhao; G. Yadigaroglu An investigation of microscale explosive vaporization of water on an ultrathin Pt wire, Int. J. Heat. Mass Trans., Volume 45 (2002), pp. 367-379

[37] Y. Iida; K. Okuyama; K. Sakurai Boiling nucleation on a very small film heater subjected to extremely rapid heating, Int. J. Heat. Mass Trans., Volume 37 (1994), pp. 2771-2780

[38] C.T. Avedisian; W.S. Osborne; F.D. McLeod; C.M. Curley Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water, Proc. R. Soc. London A, Volume 455 (1999), pp. 3875-3899

[39] O.C. Thomas; R.E. Cavicchi; M.J. Tarlov Effect of surface wettability on fast transient microboiling behavior, Langmuir, Volume 19 (2003), pp. 6168-6177

[40] K. Okuyama; S. Tsukahara; N. Morita; Y. Iida Transient behavior of boiling bubbles generated on the small heater of a thermal ink jet printhead, Exp. Therm. Fluid Sci., Volume 28 (2004), pp. 825-834

[41] P. Kafalas; A.P. Ferdinand Fog droplet vaporization and fragmentation by a 10.6-μm laser pulse, Appl. Opt., Volume 12 (1973), pp. 29-33

[42] R.G. Pinnick; A. Biswas; R.L. Armstrong; S.G. Jennings; J.D. Pendleton; G. Fernandez Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds, Appl. Opt., Volume 29 (1990), pp. 918-925

[43] S.I. Kudryashov; K. Lyon; S.D. Allen Photoacoustic study of relaxation dynamics in multibubble systems in laser-superheated water, Phys. Rev. E, Volume 73 (2006) 055301(R) (1–4)

[44] O. Yavas; P. Leiderer; H.K. Park; C.P. Grigoropoulos; C.C. Poon; W.P. Leung; N. Do; A.C. Tam Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid–solid interface induced by pulsed laser heating, Phys. Rev. Lett., Volume 70 (1993), pp. 1830-1833

[45] H.K. Park; C.P. Grigoropoulos; C.C. Poon; A.C. Tam Optical probing of the temperature transients during pulsed–laser induced boiling of liquids, Appl. Phys. Lett., Volume 68 (1993) no. 1996, pp. 596-598

[46] O. Yavas; A. Schilling; J. Bischof; J. Boneberg; P. Leiderer Bubble nucleation and pressure generation during laser cleaning of surfaces, Appl. Phys. A, Volume 64 (1997), pp. 331-339

[47] O. Reynolds On the internal cohesion of liquids and the suspension of a column of mercury to a height more than double that of the barometer (1877), Scientific Papers on Mechanical and Physical Subject, vol. I, Cambridge Univ. Press, Cambridge, 1900, pp. 231-243 (Chapter 31)

[48] O. Reynolds Some further experiments on the cohesion of water and mercury (1880–81), Scientific Papers on Mechanical and Physical Subject, vol. I, Cambridge Univ. Press, Cambridge, 1900, pp. 394-398 (Chapter 35)

[49] C. Huygens Extrait d'une lettre de M. Hugens de l'Académie Royale des Sciences à l'auteur de ce journal, touchant les phénomènes de l'eau purgée d'air, J. des Sçavants, 25 juillet 1672, Phil. Trans., Volume 7 (1672), pp. 5027-5030 (partial English translation:)

[50] G.S. Kell Early observations of negative pressures in liquids, Am. J. Phys., Volume 51 (1983), pp. 1038-1041

[51] A.T.J. Hayward The role of stabilized gas nuclei in hydrodynamic cavitation inception, J. Phys. D, Volume 3 (1970), pp. 574-579

[52] A.T.J. Hayward Mechanical pump with a suction lift of 17 metres, Nature, Volume 225 (1970), pp. 376-377

[53] Bubble and Spark Chambers: Principles and Use (R.P. Shutt, ed.), Academic Press, New York, London, 1967

[54] O. Reynolds Experiments showing the boiling of water in an open tube at ordinary temperatures (1894), Scientific Papers on Mechanical and Physical Subject, vol. II, Cambridge Univ. Press, Cambridge, 1900, pp. 578-587 (Chapter 63)

[55] M. Berthelot Sur quelques phénomènes de dilatation forcée des liquides, Ann. Chim. Phys., Volume 30 (1850), pp. 232-237

[56] H.H. Dixon; J. Joly On the ascent of sap, Phil. Trans. Roy. Soc. B, Volume 186 (1895), pp. 563-576

[57] H.H. Dixon Note on the tensile strength of water, Sci. Proc. Roy. Dublin Soc., Volume 12 (1909), pp. 60-65

[58] R.S. Vincent Measurement of tension in liquids by means of a metal bellows, Proc. Roy. Soc., Volume 53 (1941), pp. 126-140

[59] R.S. Vincent; G.H. Simmonds Examination of the Berthelot method to study tension in liquids, Proc. Roy. Soc., Volume 55 (1943), pp. 376-382

[60] H.N.V. Temperley; LL.G. Chambers The behaviour of water under hydrostatic tension: I, Proc. Phys. Soc., Volume 58 (1946), pp. 420-436

[61] H.N.V. Temperley The behaviour of water under hydrostatic tension: II, Proc. Phys. Soc., Volume 58 (1946), pp. 436-443

[62] H.N.V. Temperley The behaviour of water under hydrostatic tension: III, Proc. Phys. Soc., Volume 59 (1947), pp. 199-208

[63] A.F. Scott; D.P. Shoemaker; K.N. Tanner; J.G. Wendel Study of the Berthelot method for determining the tensile strength of a liquid, J. Chem. Phys., Volume 16 (1948), pp. 495-502

[64] G.M. Lewis The tensile strength of liquids in Berthelot tubes, Proc. Phys. Soc., Volume 78 (1961), pp. 133-144

[65] E.P. Rees; D.H. Trevena A study of the Berthelot method of measuring tensions in liquids, Brit. J. Appl. Phys., Volume 17 (1961) no. 1966, pp. 671-674

[66] A.M. Worthington On the mechanical stretching of liquids: an experimental determination of the volume-extensibility of ethyl alcohol, Phil. Trans. Roy. Soc. A, Volume 183 (1892), pp. 355-370

[67] J. Meyer Zur Kenntnis des negativen Druckes in Flüssigkeiten, Abhandl. d. Deutsch. Bunsen–Gessellschaft, Volume 6 (1911), pp. 1-53

[68] S.J. Henderson; R.J. Speedy A Berthelot–Bourdon tube method for studying water under tension, J. Phys. E: Sci. Instrum., Volume 13 (1980), pp. 778-782

[69] S.J. Henderson; R.J. Speedy Temperature of maximum density in water at negative pressure, J. Phys. Chem., Volume 91 (1987), pp. 3062-3068

[70] A. Evans A transparent recording Berthelot tensiometer, J. Phys. E: Sci. Instrum., Volume 12 (1979), pp. 276-281

[71] P.J. Chapman; B.E. Richards; D.H. Trevena Monitoring the growth of tension in a liquid contained in a Berthelot tube, J. Phys. E: Sci. Instrum., Volume 8 (1975), pp. 731-735

[72] W.M. Jones; G.D.N. Overton; D.H. Trevena Tensile strength experiments with water using a new type of Berthelot tube, J. Phys. D: Appl. Phys., Volume 14 (1981), pp. 1283-1291

[73] K. Hiro; Y. Ohde; Y. Tanzawa Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing, J. Phys. D: Appl. Phys., Volume 36 (2003), pp. 592-597

[74] E. Roedder Metastable superheated ice in liquid–water inclusions under high negative pressure, Science, Volume 155 (1967), pp. 1413-1417

[75] J.L. Green; D.J. Durben; G.H. Wolf; C.A. Angell Water and solutions at negative pressure: Raman spectroscopic study to −80 megapascals, Science, Volume 249 (1990), pp. 649-652

[76] Q. Zheng; D.J. Durben; G.H. Wolf; C.A. Angell Liquids at large negative pressures: water at the homogeneous nucleation limit, Science, Volume 254 (1991), pp. 829-832

[77] A.D. Alvarenga; M. Grimsditch; R.J. Bodnar Elastic properties of water under negative pressures, J. Chem. Phys., Volume 98 (1993), pp. 8392-8396

[78] Q. Zheng; J. Green; J. Kieffer; P.H. Poole; J. Shao; G.H. Wolf; C.A. Angell Limiting tensions for liquids and glasses from laboratory and MD studies, Budapest, 2002 (A.R. Imre; H.J. Maris; P.R. Williams, eds.) (NATO Science Series, Series II: Mathematics, Physics and Chemistry), Volume vol. 84, Kluwer, Dordrecht (2002), pp. 33-46

[79] M. Takahashi; E. Izawa; J. Etou; T. Ohtani Kinetic characteristic of bubble nucleation in superheated water using fluid inclusions, J. Phys. Soc. Japan, Volume 71 (2002), pp. 2174-2177

[80] O. Reynolds, cited in Ref. [66]

[81] L.J. Briggs Limiting negative pressure of water, J. Appl. Phys., Volume 21 (1950), pp. 721-722

[82] H.W. Strube; W. Lauterborn Untersuchung der Kavitationskeime an der Grenzfläche Quarzglas–Wasser nach der Zentrifugenmethode, Z. Angew. Phys., Volume 29 (1970), pp. 349-357

[83] S.A. Sedgewick; D.H. Trevena Limiting negative pressure of water under dynamic stressing, J. Phys. D: Appl. Phys., Volume 9 (1976), pp. 1983-1990

[84] P.R. Williams; R.L. Williams On anomalously low values of the tensile strength of water, Proc. Roy. Soc. London A, Volume 456 (2000), pp. 1321-1332

[85] P.L. Marston; B.T. Unger Rapid cavitation induced by the reflection of shock waves, July 22–25, 1985, Spokane, Washington (Y.M. Gupta, ed.), Plenum Press, New York (1986), pp. 401-405

[86] J.M. Boteler; G.T. Sutherland Tensile failure of water due to shock wave interactions, J. Appl. Phys., Volume 96 (2004), pp. 6919-6924

[87] C. Wurster; M. Köhler; R. Pecha; W. Eisenmenger; D. Suhr; U. Irmer; F. Brümmer; D. Hülser Berlin, 1995 (J. Herbertz, ed.), Universität Duisburg–Essen, Duisburg (1995), pp. 635-638 (Part 1)

[88] J. Staudenraus; W. Eisenmenger Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water, Ultrasonics, Volume 31 (1993), pp. 267-273

[89] R. Pecha, Private communication

[90] W.J. Galloway An experimental study of acoustically induced cavitation in liquids, J. Acoust. Soc. Am., Volume 26 (1954), pp. 849-857

[91] M. Greenspan; C.E. Tschiegg Radiation-induced acoustic cavitation apparatus and some results, J. Res. Nat. Bur. Stand. C, Volume 71 (1967), pp. 299-312

[92] E. Herbert; S. Balibar; F. Caupin Cavitation pressure in water, Phys. Rev. E, Volume 74 (2006) 041603 (1–22)

[93] R.D. Finch Influence of radiation on the cavitation threshold of degassed water, J. Acoust. Soc. Am., Volume 36 (1964), pp. 2287-2292

[94] W.J. Galloway, Private communication to R.D. Finch, Ref. 6 of Ref. [93]

[95] C.G. Wohl et al. Review of particle properties, Rev. Mod. Phys., Volume 56 (1984), p. S1-S299

[96] J. Winnick; S.J. Cho PVT behavior of water at negative pressures, J. Chem. Phys., Volume 55 (1971), pp. 2092-2097

[97] J.R. Macdonald Reconsideration of an experiment on water under negative pressure, J. Chem. Phys., Volume 57 (1972), pp. 3793-3802

[98] J. Winnick; S.J. Cho Erratum: PVT behavior of water at negative pressures, J. Chem. Phys., Volume 57 (1972), p. 1018

[99] H.S. Huang; D.L. Guell; J. Winnick PVT behavior of water at negative pressures: capillary tube deformation effects, J. Chem. Phys., Volume 59 (1973), pp. 6191-6192

[100] M. Volmer Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse, Z. Elektrochem., Volume 35 (1929), pp. 555-561

[101] T.J. Jarvis; M.D. Donohue; J.L. Katz Bubble nucleation mechanisms of liquid droplets superheated in other liquids, J. Colloid Interface Sci., Volume 50 (1975), pp. 359-368

[102] L. Liebermann Air bubbles in water, J. Appl. Phys., Volume 28 (1957), pp. 205-211

[103] P.S. Epstein; M.S. Plesset On the stability of gas bubbles in liquid–gas solutions, J. Chem. Phys., Volume 18 (1950), pp. 1505-1509

[104] A.A. Atchley; A. Prosperetti The crevice model of bubble nucleation, J. Acoust. Soc. Am., Volume 86 (1989), pp. 1065-1084

[105] E.N. Harvey; A.H. Whiteley; W.D. McElroy; D.C. Pease; D.K. Barnes Bubble formation in animals, II. Gas nuclei and their distribution in blood and tissues, J. Cell. Comp. Physiol., Volume 24 (1944), pp. 23-34

[106] F.E. Fox; K.F. Herzfeld Gas bubbles with organic skin as cavitation nuclei, J. Acoust. Soc. Am., Volume 26 (1954), pp. 984-989

[107] D.E. Yount; E.Q. Gillary; D.C. Hoffman A microscopic investigation of bubble formation nuclei, J. Acoust. Soc. Am., Volume 76 (1984), pp. 1511-1521

[108] N. Bremond; M. Arora; C.-D. Ohl; D. Lohse Cavitation on surfaces, J. Phys.: Condens. Matter, Volume 17 (2005), p. S3603-S3608

[109] N. Bremond; M. Arora; C.-D. Ohl; D. Lohse Controlled multibubble surface cavitation, Phys. Rev. Lett., Volume 96 (2006) 224501 (1–4)

[110] M.T. Tyree; M.H. Zimmermann Xylem Structure and the Ascent of Sap, Springer-Verlag, Berlin, Heidelberg, New York, 2002

[111] H. Cochard, Cavitation in trees, C. R. Physique, this issue, | DOI

[112] M. Versluis; B. Schmitz; A. von der Heydt; D. Lohse How snapping shrimp snap: through cavitating bubbles, Science, Volume 289 (2000), pp. 2114-2117

[113] S.N. Patek; W.L. Korff; R.L. Caldwell Deadly strike mechanism of a mantis shrimp, Nature, Volume 428 (2004), pp. 819-820

[114] S.N. Patek; R.L. Caldwell Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus, J. Exp. Biol., Volume 208 (2005), pp. 3655-3664

[115] E.C. Unger; T. Porter; W. Culp; R. Labell; T. Matsunaga; R. Zutshi Therapeutic applications of lipid-coated microbubbles, Adv. Drug Deliv. Rev., Volume 56 (2004), pp. 1291-1314

[116] K.M. Balss; C.T. Avedisian; R.E. Cavicchi; M.J. Tarlov Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers, Langmuir, Volume 21 (2005), pp. 10459-10467

[117] C.T. Avedisian; R.E. Cavicchi; M.J. Tarlov New technique for visualizing microboiling phenomena and its application to water pulse heated by a thin metal film, Rev. Sci. Instrum., Volume 77 (2006) 063706 (1-7)

[118] M.F. Sheridan; K.H. Wohletz Hydrovolcanism: basic considerations and review, J. Volcano. Geotherm. Res., Volume 17 (1983), pp. 1-29

[119] T. Kadota; H. Yamasaki Recent advances in the combustion of water fuel emulsion, Prog. Energy Comb. Sci., Volume 28 (2002), pp. 385-404

[120] O. Armas; R. Ballesteros; F.J. Martos; J.R. Agudelo Characterization of light duty Diesel engine pollutant emissions using water-emulsified fuel, Fuel, Volume 84 (2005), pp. 1011-1018

[121] C.-Y. Lin; L.-W. Chen Engine performance and emission characteristics of three-phase diesel emulsions prepared by an ultrasonic emulsification method, Fuel, Volume 85 (2006), pp. 593-600

[122] M. Nadeem; C. Rangkuti; K. Anuar; M.R.U. Haq; I.B. Tan; S.S. Shah Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants, Fuel, Volume 85 (2006), pp. 2111-2119

[123] T.J. Mason; J.P. Lorimer Applied Sonochemistry, Wiley–VCH, Weinheim, 2002

[124] G. Cravotto; P. Cintas Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large–scale applications, Chem. Soc. Rev., Volume 35 (2006), pp. 180-196

[125] D.G. Shchukin; H. Möhwald Sonochemical nanosynthesis at the engineered interface of a cavitation microbubble, Phys. Chem. Chem. Phys., Volume 8 (2006), pp. 3496-3506

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Fluid inclusions in minerals: from geosciences to the physics of water and back

Frédéric Caupin

C. R. Phys (2022)


Nucleation of crystals from their liquid phase

Sébastien Balibar; Frédéric Caupin

C. R. Phys (2006)


Cavitation in trees

Hervé Cochard

C. R. Phys (2006)