[Cavitation dans l'eau : revue]
L'eau liquide peut être amenée au-delà de la ligne d'équilibre liquide–vapeur jusque dans un état métastable, avant que la nucléation de bulles (cavitation) n'intervienne. Nous passons en revue les travaux expérimentaux sur la cavitation dans l'eau, en mettant l'accent sur la détermination du degré de métastabilité extrême auquel l'eau liquide peut exister. Nous présentons également des applications pratiques de la métastabilité et de la cavitation.
Liquid water can be brought beyond the liquid–vapor equilibrium line into a metastable state, before nucleation of bubbles (cavitation) occurs. We review the experimental work on cavitation in water, focusing on the determination of the ultimate degree of metastability at which liquid water can exist. We also present practical applications of metastability and cavitation.
Mot clés : Eau, Métastabilité, Liquide surchauffé, Liquide sous tension, Cavitation
Frédéric Caupin 1 ; Eric Herbert 1
@article{CRPHYS_2006__7_9-10_1000_0, author = {Fr\'ed\'eric Caupin and Eric Herbert}, title = {Cavitation in water: a review}, journal = {Comptes Rendus. Physique}, pages = {1000--1017}, publisher = {Elsevier}, volume = {7}, number = {9-10}, year = {2006}, doi = {10.1016/j.crhy.2006.10.015}, language = {en}, }
Frédéric Caupin; Eric Herbert. Cavitation in water: a review. Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1000-1017. doi : 10.1016/j.crhy.2006.10.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.015/
[1] Superheated liquids, Amer. Sci., Volume 64 (1976), pp. 146-156
[2] Cavitation and Tension in Liquids, Adam Hilger, Bristol, Philadelphia, 1987
[3] The homogeneous nucleation limits of liquids, J. Phys. Chem. Ref. Data, Volume 14 (1985), pp. 695-729
[4] Metastable Liquids, Princeton Univ. Press, Princeton, NJ, 1996
[5] The Acoustic Bubble, Academic Press, London, 1994
[6] Cavitation and Bubble Dynamics, Oxford Univ. Press, New York, 1995 http://resolver.caltech.edu/CaltechBOOK:1995.001 (also available at)
[7] Fundamentals of Cavitation, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004
[8] Cavitation, Imperial College Press, London, 1999
[9] Homogeneous nucleation: theory and experiment, J. Phys.: Condens. Matter, Volume 4 (1992), pp. 7627-7650
[10] H.J. Maris, Theory of nucleation, C. R. Physique, this issue, | DOI
[11] The fracture of liquids, J. Appl. Phys., Volume 19 (1948), pp. 1062-1067
[12] S. Balibar, F. Caupin, Nucleation of crystals from their liquid phase, C. R. Physique, | DOI
[13] Experimental investigation of cavitation in superfluid 4He, Phys. Rev. B, Volume 49 (1994), pp. 12062-12070
[14] Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., Volume 31 (1959), pp. 688-699
[15] Liquid–vapor interface, cavitation, and the phase diagram of water, Phys. Rev. E, Volume 71 (2005) no. 1–5, p. 051605
[16] Stability-limit conjecture. An interpretation of the properties of water, J. Phys. Chem., Volume 86 (1982), pp. 982-991
[17] Anomaly in the stability limit of liquid helium 3, Phys. Rev. Lett., Volume 87 (2001) 145302 (1–4)
[18] Spinodal of liquid water, Phys. Rev. E, Volume 48 (1993), pp. 3799-3817
[19] Static and dynamic properties of stretched water, J. Chem. Phys., Volume 115 (2001), pp. 344-348
[20] Interplay between time–temperature transformation and the liquid–liquid phase transition in water, Phys. Rev. Lett., Volume 88 (2002) 195701 (1–4)
[21] Supercooled and glassy water, J. Phys.: Condens. Matter, Volume 15 (2003), p. R1669-R1726
[22] J.-A. De Luc, Introduction à la physique terrestre par les fluides expansibles, Paris, 1803, p. 93
[23] Mémoire sur la cohésion des liquides, et sur leur adhérence aux corps solides, Ann. Chim. Phys., Volume 16 (1846), pp. 167-190
[24] The superheating of liquids, J. Phys. Chem., Volume 28 (1924), pp. 1297-1307
[25] Maximum superheating of water as a measure of negative pressure, J. Appl. Phys., Volume 26 (1955), pp. 1001-1003
[26] Nucleation in small capillary tubes, Chem. Phys., Volume 230 (1998), pp. 253-265
[27] Sur l'ébullition des liquides, C. R. Acad. Sci., Volume 52 (1861), pp. 986-989
[28] Vaporization of superheated drops in liquids, AIChE J., Volume 5 (1959), pp. 458-466
[29] On the limit of superheat, J. Phys. Soc. Japan, Volume 13 (1958), pp. 1398-1403
[30] Vapor nucleation at a liquid–liquid interface, J. Chem. Phys., Volume 54 (1971), pp. 62-63
[31] Bubble nucleation in n-pentane, n-hexane, n-pentane + hexadecane mixtures, and water, J. Phys. Chem., Volume 75 (1971), pp. 3613-3619
[32] Water superheated to 279.5 °C at atmospheric pressure, Nature Phys. Sci., Volume 238 (1972), pp. 63-64
[33] Kinetics of spontaneous nucleation in strongly heated liquids, High Temp. (USSR), Volume 8 (1970), pp. 540-545 (translated from Teplofiz. Vys. Temp., 8, 1970, pp. 579-585)
[34] Explosive boiling of liquids and fluctuation nucleus formation, High Temp. (USSR), Volume 8 (1970), pp. 782-787 (translated from Teplofiz. Vys. Temp., 8, 1970, pp. 833-839)
[35] Experimental studies of heat transfer and vapour formation in fast transient boiling, Int. J. Heat. Mass Trans., Volume 28 (1985), pp. 2085-2092
[36] An investigation of microscale explosive vaporization of water on an ultrathin Pt wire, Int. J. Heat. Mass Trans., Volume 45 (2002), pp. 367-379
[37] Boiling nucleation on a very small film heater subjected to extremely rapid heating, Int. J. Heat. Mass Trans., Volume 37 (1994), pp. 2771-2780
[38] Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water, Proc. R. Soc. London A, Volume 455 (1999), pp. 3875-3899
[39] Effect of surface wettability on fast transient microboiling behavior, Langmuir, Volume 19 (2003), pp. 6168-6177
[40] Transient behavior of boiling bubbles generated on the small heater of a thermal ink jet printhead, Exp. Therm. Fluid Sci., Volume 28 (2004), pp. 825-834
[41] Fog droplet vaporization and fragmentation by a 10.6-μm laser pulse, Appl. Opt., Volume 12 (1973), pp. 29-33
[42] Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds, Appl. Opt., Volume 29 (1990), pp. 918-925
[43] Photoacoustic study of relaxation dynamics in multibubble systems in laser-superheated water, Phys. Rev. E, Volume 73 (2006) 055301(R) (1–4)
[44] Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid–solid interface induced by pulsed laser heating, Phys. Rev. Lett., Volume 70 (1993), pp. 1830-1833
[45] Optical probing of the temperature transients during pulsed–laser induced boiling of liquids, Appl. Phys. Lett., Volume 68 (1993) no. 1996, pp. 596-598
[46] Bubble nucleation and pressure generation during laser cleaning of surfaces, Appl. Phys. A, Volume 64 (1997), pp. 331-339
[47] On the internal cohesion of liquids and the suspension of a column of mercury to a height more than double that of the barometer (1877), Scientific Papers on Mechanical and Physical Subject, vol. I, Cambridge Univ. Press, Cambridge, 1900, pp. 231-243 (Chapter 31)
[48] Some further experiments on the cohesion of water and mercury (1880–81), Scientific Papers on Mechanical and Physical Subject, vol. I, Cambridge Univ. Press, Cambridge, 1900, pp. 394-398 (Chapter 35)
[49] Extrait d'une lettre de M. Hugens de l'Académie Royale des Sciences à l'auteur de ce journal, touchant les phénomènes de l'eau purgée d'air, J. des Sçavants, 25 juillet 1672, Phil. Trans., Volume 7 (1672), pp. 5027-5030 (partial English translation:)
[50] Early observations of negative pressures in liquids, Am. J. Phys., Volume 51 (1983), pp. 1038-1041
[51] The role of stabilized gas nuclei in hydrodynamic cavitation inception, J. Phys. D, Volume 3 (1970), pp. 574-579
[52] Mechanical pump with a suction lift of 17 metres, Nature, Volume 225 (1970), pp. 376-377
[53] Bubble and Spark Chambers: Principles and Use (R.P. Shutt, ed.), Academic Press, New York, London, 1967
[54] Experiments showing the boiling of water in an open tube at ordinary temperatures (1894), Scientific Papers on Mechanical and Physical Subject, vol. II, Cambridge Univ. Press, Cambridge, 1900, pp. 578-587 (Chapter 63)
[55] Sur quelques phénomènes de dilatation forcée des liquides, Ann. Chim. Phys., Volume 30 (1850), pp. 232-237
[56] On the ascent of sap, Phil. Trans. Roy. Soc. B, Volume 186 (1895), pp. 563-576
[57] Note on the tensile strength of water, Sci. Proc. Roy. Dublin Soc., Volume 12 (1909), pp. 60-65
[58] Measurement of tension in liquids by means of a metal bellows, Proc. Roy. Soc., Volume 53 (1941), pp. 126-140
[59] Examination of the Berthelot method to study tension in liquids, Proc. Roy. Soc., Volume 55 (1943), pp. 376-382
[60] The behaviour of water under hydrostatic tension: I, Proc. Phys. Soc., Volume 58 (1946), pp. 420-436
[61] The behaviour of water under hydrostatic tension: II, Proc. Phys. Soc., Volume 58 (1946), pp. 436-443
[62] The behaviour of water under hydrostatic tension: III, Proc. Phys. Soc., Volume 59 (1947), pp. 199-208
[63] Study of the Berthelot method for determining the tensile strength of a liquid, J. Chem. Phys., Volume 16 (1948), pp. 495-502
[64] The tensile strength of liquids in Berthelot tubes, Proc. Phys. Soc., Volume 78 (1961), pp. 133-144
[65] A study of the Berthelot method of measuring tensions in liquids, Brit. J. Appl. Phys., Volume 17 (1961) no. 1966, pp. 671-674
[66] On the mechanical stretching of liquids: an experimental determination of the volume-extensibility of ethyl alcohol, Phil. Trans. Roy. Soc. A, Volume 183 (1892), pp. 355-370
[67] Zur Kenntnis des negativen Druckes in Flüssigkeiten, Abhandl. d. Deutsch. Bunsen–Gessellschaft, Volume 6 (1911), pp. 1-53
[68] A Berthelot–Bourdon tube method for studying water under tension, J. Phys. E: Sci. Instrum., Volume 13 (1980), pp. 778-782
[69] Temperature of maximum density in water at negative pressure, J. Phys. Chem., Volume 91 (1987), pp. 3062-3068
[70] A transparent recording Berthelot tensiometer, J. Phys. E: Sci. Instrum., Volume 12 (1979), pp. 276-281
[71] Monitoring the growth of tension in a liquid contained in a Berthelot tube, J. Phys. E: Sci. Instrum., Volume 8 (1975), pp. 731-735
[72] Tensile strength experiments with water using a new type of Berthelot tube, J. Phys. D: Appl. Phys., Volume 14 (1981), pp. 1283-1291
[73] Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing, J. Phys. D: Appl. Phys., Volume 36 (2003), pp. 592-597
[74] Metastable superheated ice in liquid–water inclusions under high negative pressure, Science, Volume 155 (1967), pp. 1413-1417
[75] Water and solutions at negative pressure: Raman spectroscopic study to −80 megapascals, Science, Volume 249 (1990), pp. 649-652
[76] Liquids at large negative pressures: water at the homogeneous nucleation limit, Science, Volume 254 (1991), pp. 829-832
[77] Elastic properties of water under negative pressures, J. Chem. Phys., Volume 98 (1993), pp. 8392-8396
[78] Limiting tensions for liquids and glasses from laboratory and MD studies, Budapest, 2002 (A.R. Imre; H.J. Maris; P.R. Williams, eds.) (NATO Science Series, Series II: Mathematics, Physics and Chemistry), Volume vol. 84, Kluwer, Dordrecht (2002), pp. 33-46
[79] Kinetic characteristic of bubble nucleation in superheated water using fluid inclusions, J. Phys. Soc. Japan, Volume 71 (2002), pp. 2174-2177
[80] O. Reynolds, cited in Ref. [66]
[81] Limiting negative pressure of water, J. Appl. Phys., Volume 21 (1950), pp. 721-722
[82] Untersuchung der Kavitationskeime an der Grenzfläche Quarzglas–Wasser nach der Zentrifugenmethode, Z. Angew. Phys., Volume 29 (1970), pp. 349-357
[83] Limiting negative pressure of water under dynamic stressing, J. Phys. D: Appl. Phys., Volume 9 (1976), pp. 1983-1990
[84] On anomalously low values of the tensile strength of water, Proc. Roy. Soc. London A, Volume 456 (2000), pp. 1321-1332
[85] Rapid cavitation induced by the reflection of shock waves, July 22–25, 1985, Spokane, Washington (Y.M. Gupta, ed.), Plenum Press, New York (1986), pp. 401-405
[86] Tensile failure of water due to shock wave interactions, J. Appl. Phys., Volume 96 (2004), pp. 6919-6924
[87] Berlin, 1995 (J. Herbertz, ed.), Universität Duisburg–Essen, Duisburg (1995), pp. 635-638 (Part 1)
[88] Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water, Ultrasonics, Volume 31 (1993), pp. 267-273
[89] R. Pecha, Private communication
[90] An experimental study of acoustically induced cavitation in liquids, J. Acoust. Soc. Am., Volume 26 (1954), pp. 849-857
[91] Radiation-induced acoustic cavitation apparatus and some results, J. Res. Nat. Bur. Stand. C, Volume 71 (1967), pp. 299-312
[92] Cavitation pressure in water, Phys. Rev. E, Volume 74 (2006) 041603 (1–22)
[93] Influence of radiation on the cavitation threshold of degassed water, J. Acoust. Soc. Am., Volume 36 (1964), pp. 2287-2292
[94] W.J. Galloway, Private communication to R.D. Finch, Ref. 6 of Ref. [93]
[95] et al. Review of particle properties, Rev. Mod. Phys., Volume 56 (1984), p. S1-S299
[96] PVT behavior of water at negative pressures, J. Chem. Phys., Volume 55 (1971), pp. 2092-2097
[97] Reconsideration of an experiment on water under negative pressure, J. Chem. Phys., Volume 57 (1972), pp. 3793-3802
[98] Erratum: PVT behavior of water at negative pressures, J. Chem. Phys., Volume 57 (1972), p. 1018
[99] PVT behavior of water at negative pressures: capillary tube deformation effects, J. Chem. Phys., Volume 59 (1973), pp. 6191-6192
[100] Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse, Z. Elektrochem., Volume 35 (1929), pp. 555-561
[101] Bubble nucleation mechanisms of liquid droplets superheated in other liquids, J. Colloid Interface Sci., Volume 50 (1975), pp. 359-368
[102] Air bubbles in water, J. Appl. Phys., Volume 28 (1957), pp. 205-211
[103] On the stability of gas bubbles in liquid–gas solutions, J. Chem. Phys., Volume 18 (1950), pp. 1505-1509
[104] The crevice model of bubble nucleation, J. Acoust. Soc. Am., Volume 86 (1989), pp. 1065-1084
[105] Bubble formation in animals, II. Gas nuclei and their distribution in blood and tissues, J. Cell. Comp. Physiol., Volume 24 (1944), pp. 23-34
[106] Gas bubbles with organic skin as cavitation nuclei, J. Acoust. Soc. Am., Volume 26 (1954), pp. 984-989
[107] A microscopic investigation of bubble formation nuclei, J. Acoust. Soc. Am., Volume 76 (1984), pp. 1511-1521
[108] Cavitation on surfaces, J. Phys.: Condens. Matter, Volume 17 (2005), p. S3603-S3608
[109] Controlled multibubble surface cavitation, Phys. Rev. Lett., Volume 96 (2006) 224501 (1–4)
[110] Xylem Structure and the Ascent of Sap, Springer-Verlag, Berlin, Heidelberg, New York, 2002
[111] H. Cochard, Cavitation in trees, C. R. Physique, this issue, | DOI
[112] How snapping shrimp snap: through cavitating bubbles, Science, Volume 289 (2000), pp. 2114-2117
[113] Deadly strike mechanism of a mantis shrimp, Nature, Volume 428 (2004), pp. 819-820
[114] Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus, J. Exp. Biol., Volume 208 (2005), pp. 3655-3664
[115] Therapeutic applications of lipid-coated microbubbles, Adv. Drug Deliv. Rev., Volume 56 (2004), pp. 1291-1314
[116] Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers, Langmuir, Volume 21 (2005), pp. 10459-10467
[117] New technique for visualizing microboiling phenomena and its application to water pulse heated by a thin metal film, Rev. Sci. Instrum., Volume 77 (2006) 063706 (1-7)
[118] Hydrovolcanism: basic considerations and review, J. Volcano. Geotherm. Res., Volume 17 (1983), pp. 1-29
[119] Recent advances in the combustion of water fuel emulsion, Prog. Energy Comb. Sci., Volume 28 (2002), pp. 385-404
[120] Characterization of light duty Diesel engine pollutant emissions using water-emulsified fuel, Fuel, Volume 84 (2005), pp. 1011-1018
[121] Engine performance and emission characteristics of three-phase diesel emulsions prepared by an ultrasonic emulsification method, Fuel, Volume 85 (2006), pp. 593-600
[122] Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants, Fuel, Volume 85 (2006), pp. 2111-2119
[123] Applied Sonochemistry, Wiley–VCH, Weinheim, 2002
[124] Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large–scale applications, Chem. Soc. Rev., Volume 35 (2006), pp. 180-196
[125] Sonochemical nanosynthesis at the engineered interface of a cavitation microbubble, Phys. Chem. Chem. Phys., Volume 8 (2006), pp. 3496-3506
Cité par Sources :
Commentaires - Politique