[Domaine de résistance macroscopique d'une maçonnerie quasi-périodique]
L'objet de cette Note est la détermination du domaine de résistance homogénéisé dans le plan d'une maçonnerie quasi-périodique constituée de blocs infiniment résistants en contact à travers des interfaces de Mohr–Coulomb sans cohésion. Cette maçonnerie est obtenue en perturbant aléatoirement la dimension horizontale des blocs à partir d'une maçonnerie périodique. On trouve que, dans certains cas non triviaux, le domaine de résistance coincide exactement avec celui de la maçonnerie périodique initiale.
The purpose of this Note is the determination of the in-plane homogenized strength domain of a “quasi-periodic” masonry under the assumption of infinitely resistant blocks connected by cohesionless Mohr–Coulomb interfaces. This masonry is obtained by introducing a random perturbation on the horizontal width of the blocks of a periodic running bond masonry. It is found that in some non-trivial cases the strength domain coincides exactly with that of the initial periodic masonry.
Accepté le :
Publié le :
Mot clés : Solides et structures, Homogénéisation, Domaine de résistance, Microstructure aléatoire, Bornes, Maçonnerie, Mohr–Coulomb
Karam Sab 1
@article{CRMECA_2009__337_8_603_0, author = {Karam Sab}, title = {Overall ultimate yield strength of a quasi-periodic masonry}, journal = {Comptes Rendus. M\'ecanique}, pages = {603--609}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2009}, doi = {10.1016/j.crme.2009.06.034}, language = {en}, }
Karam Sab. Overall ultimate yield strength of a quasi-periodic masonry. Comptes Rendus. Mécanique, Volume 337 (2009) no. 8, pp. 603-609. doi : 10.1016/j.crme.2009.06.034. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.034/
[1] A homogenization approach to the ultimate strength of brick masonry, J. Mech. Phys. Solids, Volume 45 (1997) no. 7, pp. 1085-1104
[2] Yield design of thin periodic plates by a homogenization technique and an application to masonry walls, C. R. Mécanique, Volume 331 (2003), pp. 641-646
[3] Experimental validation of a homogenized plate model for the yield design of masonry walls, C. R. Mécanique, Volume 336 (2008), pp. 487-492
[4] Homogenization of non-periodic masonry structures, Int. J. Solids Struct., Volume 41 (2004) no. 7, pp. 1911-1923
[5] Stochastic representation of the mechanical properties of irregular masonry structures, Int. J. Solids Struct., Volume 44 (2007), pp. 8600-8612
[6] Discrete and continuous models for in plane loaded random elastic brickwork, Eur. J. Mech. A/Solids, Volume 28 (2009) no. 3, pp. 610-625
[7] A homogenized Love–Kirchhoff model for out-of-plane loaded random 2D lattices. Application to “quasi-periodic” brickwork panels, Int. J. Solids Struct., Volume 46 (2009) no. 14–15, pp. 2907-2919
[8] Hill's principle and homogenization of random materials, C. R. Acad. Sci., Sér. II, Volume 312 (1991) no. 1, pp. 1-5
[9] Homogenization of non-linear random media by a duality method. Application to plasticity, Asymptotic Anal., Volume 9 (1994), pp. 311-336
[10] Determination of the overall yield strength domain of out-of-plane loaded brick masonry, Int. J. Multiscale Comput. Eng., Volume 5 (2007), pp. 83-92
[11] Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, Volume 54 (2006) no. 5, pp. 1029-1063
[12] An introduction to the yield design theory and its application in soil mechanics, Eur. J. Mech. A/Solids, Volume 9 (1990) no. 5, pp. 477-550
[13] Boundary value problems with rapidly oscillating random coefficients (J. Fritz; J.L. Lebowitz; D. Szasz, eds.), Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, Colloquia Mathematica Societatis Janos Bolyai, vol. 2, North Holland, Elsevier Science Publishers, Amsterdam, New York, Oxford, 1979, pp. 835-873
[14] Averaging of random operators, Math. USSR Sb., Volume 37 (1980) no. 2, pp. 167-180
[15] Material spatial randomness: From statistical to representative volume element, Probab. Eng. Mech., Volume 21 (2006), pp. 112-132
[16] Homogenization of discrete media, J. Phys. IV, Volume 8 (1998) no. P8, pp. 317-324
[17] A rigorous homogenization method for the determination of the overall ultimate strength of periodic discrete media and an application to general hexagonal lattices of beams, Eur. J. Mech. A/Solids, Volume 25 (2006) no. 1, pp. 72-97
Cité par Sources :
Commentaires - Politique