[Caustique en « corne de croissant » et focalisation des ondes acoustiques générées par une antenne paramétrique]
Ce travail est consacré à l'étude de la caustique en « corne de croissant » à la surface d'un réflecteur hémi-cylindrique illuminée par des ondes planes. En vue de générer des ondes planes acoustiques de basse fréquence (autour de 4 kHz), une antenne paramétrique disponible commercialement a été utilisée. Elle produit une onde ultrasonore porteuse de forte puissance à 40 kHz qui peut-être modulée en amplitude de façon électronique entre 200 Hz et 10 kHz. Le processus d'auto-démodulation au cours de la propagation dans l'air permet de générer un champ acoustique ultra-directif (c'est-à-dire des ondes quasi-planes) autorisant une étude précise de la focalisation le long de la caustique. Le coefficient de focalisation est alors calculé localement, en utilisant deux approches numériques différentes, d'une part en calculant la densité de rayons tangents à la caustique et d'autre part en mettant en œuvre une méthode de calcul du type tracé de rayons. Des résultats expérimentaux préliminaires sont alors décrits avec l'objectif de valider les prédictions numériques (position spatiale de la singularité et coefficient de focalisation).
The present Note is devoted to the study of the so-called cuspidal caustic at the surface of a hemi-cylindrical reflector illuminated with plane waves. In order to generate low frequency (e.g. in the range of 4 kHz) acoustical plane waves, a commercially available parametric array has been used. It produces powerful ultrasonic carrier waves at 40 kHz which can be electronically modulated between 200 Hz and 10 kHz. Further self-demodulation process during propagation in air generates an ultra-directive acoustical field (i.e. quasi-planar wavefronts) enabling to accurately study the focusing process occurring along the cuspidal caustic. The focusing coefficient can be computed locally by using two numerical tools, on one hand by computing the density of tangent rays to the caustic, and on the other hand by using some numerical results provided by a ray tracing algorithm. Some preliminary experimental data are then provided in order to validate the numerical predictions (spatial position of the caustic and focusing coefficient).
Accepté le :
Publié le :
Mot clés : Acoustique, Propagation sur un réflecteur hémi-cylindrique, Caustique en corne de croissant, Coefficient de focalisation, Calcul du type tracé de rayons
Bernard Castagnède 1 ; Sohbi Sahraoui 1 ; Vincent Tournat 1 ; Najat Tahani 1
@article{CRMECA_2009__337_9-10_693_0, author = {Bernard Castagn\`ede and Sohbi Sahraoui and Vincent Tournat and Najat Tahani}, title = {Cuspidal caustic and focusing of acoustical waves generated by a parametric array onto a concave reflecting surface}, journal = {Comptes Rendus. M\'ecanique}, pages = {693--702}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.006}, language = {en}, }
TY - JOUR AU - Bernard Castagnède AU - Sohbi Sahraoui AU - Vincent Tournat AU - Najat Tahani TI - Cuspidal caustic and focusing of acoustical waves generated by a parametric array onto a concave reflecting surface JO - Comptes Rendus. Mécanique PY - 2009 SP - 693 EP - 702 VL - 337 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2009.09.006 LA - en ID - CRMECA_2009__337_9-10_693_0 ER -
%0 Journal Article %A Bernard Castagnède %A Sohbi Sahraoui %A Vincent Tournat %A Najat Tahani %T Cuspidal caustic and focusing of acoustical waves generated by a parametric array onto a concave reflecting surface %J Comptes Rendus. Mécanique %D 2009 %P 693-702 %V 337 %N 9-10 %I Elsevier %R 10.1016/j.crme.2009.09.006 %G en %F CRMECA_2009__337_9-10_693_0
Bernard Castagnède; Sohbi Sahraoui; Vincent Tournat; Najat Tahani. Cuspidal caustic and focusing of acoustical waves generated by a parametric array onto a concave reflecting surface. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 693-702. doi : 10.1016/j.crme.2009.09.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.006/
[1] Formation of phonon-focusing caustics in crystals, Phys. Rev. B, Volume 34 (1986), pp. 2852-2862
[2] Curvature of acoustic slowness surface of anisotropic solids near symmetry axes, Phys. Rev. B, Volume 53 (1996), pp. 14906-14916
[3] Finite-wavelength on the ballistic propagation of surface acoustic axes, Phys. Rev. B, Volume 49 (1994), pp. 17378-17384
[4] Focusing of acoustic energy at the conical point in zinc, Phys. Rev. Lett., Volume 70 (1993), pp. 3443-3446
[5] SAW focusing by circular-arc interdigital transducers on YZ-LiNbO3, Ultrason. Ferroelectr. Freq. Control, Volume 36 (1989), pp. 178-184
[6] Calculations of internal-wave-induced fluctuations in ocean-acoustic propagation, J. Acoust. Soc. Am., Volume 108 (2000), pp. 526-534
[7] et al. Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern north pacific ocean, J. Acoust. Soc. Am., Volume 105 (1999), pp. 3202-3218
[8] et al. Near-caustic behavior in a 270-km acoustical experiment, J. Acoust. Soc. Am., Volume 105 (1999), pp. 3231-3244
[9] et al. Ray dynamics in a long-range acoustic propagation experiment, J. Acoust. Soc. Am., Volume 114 (2003), pp. 1226-1242
[10] Hybrid(ray)-(parabolic-equation) analysis of propagation in ocean acoustic guiding environments, J. Acoust. Soc. Am., Volume 83 (1988), pp. 950-960
[11] Experimental simulation of supersonic superboom in a water tank: Nonlinear focusing of weak shock waves at a fold caustic, Phys. Rev. Lett., Volume 91 (2003), p. 184301
[12] Focusing of weak acoustic shock waves at a caustic cusp, Wave Motion, Volume 32 (2000), pp. 233-245
[13] Time domain formulation for pulse propagation including nonlinear behavior at a caustic, J. Acoust. Soc. Am., Volume 81 (1987), pp. 1406-1417
[14] Reflection of caustics and focused sonic booms, Wave Motion, Volume 42 (2005), pp. 211-225
[15] Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation, J. Acoust. Soc. Am., Volume 111 (2002), pp. 487-498
[16] On the appearance of caustics for plane sound-wave propagation in moving random media, Waves Rand. Complex Media, Volume 5 (1995), pp. 183-199
[17] A new ray-tracing algorithm for arbitrary inhomogeneous and moving media, including caustics, J. Acoust. Soc. Am., Volume 90 (1991), pp. 2109-2117
[18] Propagation of sound through a turbulent vortex, Phys. Rev. Lett., Volume 81 (1998), pp. 1413-1416
[19] The axisymetrical buckling parameters in flexed plates as determined by caustics, Eng. Fract. Mech., Volume 52 (1995), pp. 583-597
[20] Acoustic modes propagating along the free surface of granular media, J. Acoust. Soc. Am., Volume 121 (2007), pp. 2600-2611
[21] Acoustic waves in an elastic channel near the free surface of granular media, Phys. Rev. Lett., Volume 96 (2006), p. 214301
[22] Acoustic probing of the jamming transition in an unconsolidated granular medium, Phys. Rev. Lett., Volume 100 (2008), p. 158003
[23] Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts, J. Acoust. Soc. Am., Volume 85 (1989), pp. 1427-1440
[24] Space-time surface gravity wave caustics: Structurally stable extreme wave events, Wave Motion, Volume 33 (2001), pp. 117-143
[25] The transient wave fields in the vicinity of the elliptic, hyperbolic and parabolic umbilic caustics, J. Acoust. Soc. Am., Volume 79 (1986), pp. 1365-1401
[26] Causality, caustics, and the structure of transient wave fields, J. Acoust. Soc. Am., Volume 80 (1986), pp. 251-255
[27] The transient wave fields in the vicinity of the cuspidal caustics, J. Acoust. Soc. Am., Volume 79 (1986), pp. 1367-1384
[28] Catastrophe Theory and Its Applications, Pitman, London, 1976
[29] Sound radiation and caustic formation from a point source in a wall shear layer, AIAA J., Volume 32 (1994), p. 1135
[30] Acoustic propagation in wall shear flows and the formation of caustics, J. Acoust. Soc. Am., Volume 74 (1983), pp. 1869-1879
[31] Caustics in cylindrical ducts, Proc. R. Soc. London, Series A, Volume 455 (1999), pp. 2529-2548
[32] High-wavenumber acoustic radiation from a thin-walled axisymmetric cylinder, J. Sound Vibration, Volume 255 (2002), pp. 129-146
[33] Geometrical and Catastrophe Optics Methods in Acoustical Scattering (W.P. Mason; R.N. Thurston, eds.), Physical Acoustics, vol. XXI, Academic Press, New York, 1989
[34] Acoustics – An Introduction to Its Physical Principles and Applications, ASA-AIP Edition, New York, 1991 (§ 8 and 9, pp. 371–507)
[35] Numerical solution of conservation equations arising in linear wave theory — Application to aeroacoustics, J. Fluid Mech., Volume 83 (1977), pp. 465-493
[36] Application of nonlinearly demodulated acoustic signals for the measurement of the acoustical coefficient of reflection for air saturated porous materials, C. R. Mécanique, Volume 332 (2004), pp. 849-858
[37] Reflection and transmission at normal incidence onto air-saturated porous materials and direct measurements based on parametric demodulated ultrasonic waves, Ultrasonics, Volume 44 (2006), pp. 221-229
[38] Metrology of absorption and dispersion of sound absorbing materials on high power ultrasonic non-linearly demodulated waves, Appl. Acoust., Volume 69 (2008), pp. 634-648
Cité par Sources :
Commentaires - Politique