[Singularités génériques du lieu conjugé en géométrie sous-riemannienne dans le cas 3D-contact]
Dans cet article, nous étendons et achevons la classification des singularités génériques du lieu conjugué sous-riemannien 3D-contact au voisinage de l'origine.
In this paper, we extend and complete the classification of the generic singularities of the 3D-contact sub-Riemmanian conjugate locus in a neighborhood of the origin.
Accepté le :
Publié le :
Benoît Bonnet 1 ; Jean-Paul Gauthier 1 ; Francesco Rossi 2
@article{CRMATH_2019__357_6_520_0, author = {Beno{\^\i}t Bonnet and Jean-Paul Gauthier and Francesco Rossi}, title = {Generic singularities of the {3D-contact} {sub-Riemannian} conjugate locus}, journal = {Comptes Rendus. Math\'ematique}, pages = {520--527}, publisher = {Elsevier}, volume = {357}, number = {6}, year = {2019}, doi = {10.1016/j.crma.2019.05.008}, language = {en}, }
TY - JOUR AU - Benoît Bonnet AU - Jean-Paul Gauthier AU - Francesco Rossi TI - Generic singularities of the 3D-contact sub-Riemannian conjugate locus JO - Comptes Rendus. Mathématique PY - 2019 SP - 520 EP - 527 VL - 357 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2019.05.008 LA - en ID - CRMATH_2019__357_6_520_0 ER -
Benoît Bonnet; Jean-Paul Gauthier; Francesco Rossi. Generic singularities of the 3D-contact sub-Riemannian conjugate locus. Comptes Rendus. Mathématique, Volume 357 (2019) no. 6, pp. 520-527. doi : 10.1016/j.crma.2019.05.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.05.008/
[1] Methods of control theory in nonholonomic geometry, Proc. ICM-94, Birkhäuser, Zürich, Switzerland, 1995
[2] Exponential mappings for contact sub-Riemannian structures, J. Dyn. Control Syst., Volume 2 (1996) no. 3, pp. 321-358
[3] Subriemannian metrics on , Proc. Can. Math. Soc., Volume 25 (1998), pp. 29-76
[4] On subriemannian caustics and wave fronts for contact distributions in the three space, J. Dyn. Control Syst., Volume 6 (2000) no. 3, pp. 365-395
[5] A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, 2019
[6] Small sub-Riemannian balls on , J. Dyn. Control Syst., Volume 2 (1996) no. 3, pp. 359-421
[7] Differential Topology, Springer Graduate Texts in Mathematics, vol. 33, 1974
[8] Short geodesics losing optimality in contact sub-Riemannian manifolds and stability of the 5-dimensional caustic, SIAM J. Control Optim. (2019) (accepted for publication in) | arXiv
Cité par Sources :
Commentaires - Politique