This study deals with colloid transport in porous media which applications are found in subsurface water, petroleum engineering or civil engineering. An experimental study of colloidal polystyrene Latex particles deposition in a consolidated porous medium is presented. The influence of ionic strength of the colloid suspension and the flow rate on particle deposition is investigated. We see first that beyond a critical salt concentration, the total collector efficiency increases with the ionic strength. Moreover, such collector efficiency decreases as the flow rate increases according to theory. In other respects, using a γ ray attenuation technique allows us to measure local porosity fluctuation due to particles deposition. By this way deposition kinetics may be followed locally and precisely. Nevertheless when considering the thickness of the adsorbed layer over large scales, obtained results using the γ rays attenuation technique are found in good agreement with those obtained by means of an usual technique especially at latest stages of adsorption process.
Cette Note se situe dans le cadre des études concernant le transport de colloïdes en milieux poreux, sujet qui concerne de nombreux domaines d'application tels que la contamination des eaux souterraines, le génie pétrolier ou le génie civil. Une étude expérimentale du dépôt de particules de Latex de polystyrène dans un milieu poreux artificiel consolidé est présentée. L'influence de la force ionique de la suspension colloïdale et du débit d'injection sur le dépôt de particules est étudiée. On observe que, au-delà d'une valeur critique, l'efficacité du collecteur (surface solide sur laquelle se déposent les particules) croît avec la force ionique alors que l'efficacité du collecteur décroît quand le débit d'injection augmente. Des mesures locales, par atténuation d'un rayonnement γ mettent en évidence la réduction de porosité due au dépôt de particules. Les épaisseurs de couches déposées, mesurées en fin d'expérience, correspondent à des structures de monocouches de particules déposées.
Accepted:
Published online:
Keywords: Porous media, Colloid, Deposit, Ionic strength
Abdelkader Djehiche 1, 2; Vladimir Canseco 1; Aziz Omari 1; Henri Bertin 1
@article{CRMECA_2009__337_9-10_682_0, author = {Abdelkader Djehiche and Vladimir Canseco and Aziz Omari and Henri Bertin}, title = {\'Etude exp\'erimentale du d\'ep\^ot de particules collo{\"\i}dales en milieu poreux : {Influence} de l'hydrodynamique et de la salinit\'e}, journal = {Comptes Rendus. M\'ecanique}, pages = {682--692}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.08.002}, language = {fr}, }
TY - JOUR AU - Abdelkader Djehiche AU - Vladimir Canseco AU - Aziz Omari AU - Henri Bertin TI - Étude expérimentale du dépôt de particules colloïdales en milieu poreux : Influence de l'hydrodynamique et de la salinité JO - Comptes Rendus. Mécanique PY - 2009 SP - 682 EP - 692 VL - 337 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2009.08.002 LA - fr ID - CRMECA_2009__337_9-10_682_0 ER -
%0 Journal Article %A Abdelkader Djehiche %A Vladimir Canseco %A Aziz Omari %A Henri Bertin %T Étude expérimentale du dépôt de particules colloïdales en milieu poreux : Influence de l'hydrodynamique et de la salinité %J Comptes Rendus. Mécanique %D 2009 %P 682-692 %V 337 %N 9-10 %I Elsevier %R 10.1016/j.crme.2009.08.002 %G fr %F CRMECA_2009__337_9-10_682_0
Abdelkader Djehiche; Vladimir Canseco; Aziz Omari; Henri Bertin. Étude expérimentale du dépôt de particules colloïdales en milieu poreux : Influence de l'hydrodynamique et de la salinité. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 682-692. doi : 10.1016/j.crme.2009.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.08.002/
[1] Transport of reactive colloids contaminants in groundwater: Effect of nonlinear kinetic interactions, Journal of Contaminant Hydrology, Volume 32 (1998), pp. 313-331
[2] Transport of iron oxide colloids in packed quartz sand media: Monolayer and multilayer deposition, Journal of Colloid and Interface Science, Volume 231 (2000), pp. 32-41
[3] Contaminant transport in dual-porosity media with dissolved organic matter and bacteria present as mobile colloids, Journal of Contaminant Hydrology, Volume 59 (2002), pp. 267-289
[4] Interpreting deposition patterns of microbial particles in laboratory-scale column experiments, Environ. Sci. Technol., Volume 37 (2003), pp. 616-623
[5] Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition, Advanced in Water Resources, Volume 30 (2007), pp. 1432-1454
[6] Migration of Fines in Porous Media, Kluwer Academic Publishers, 1998 (ISBN: 0-7923-5284-X)
[7] Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers, Langmuir, Volume 6 (1990), pp. 1153-1163
[8] Particle adsorption and deposition: Role of electrostatic interactions, Advances in Colloid and Interface Science, Volume 100–102 (2003), pp. 267-347
[9] Review: Colloid mobilization and transport in groundwater, Colloids and Surfaces A, Volume 107 (1996), pp. 1-56
[10] Chemical mobilization of micron-sized particles in saturated porous media under steady flow conditions, Environ. Sci. Technol., Volume 26 (1992), pp. 586-593
[11] Particle deposition in porous media: Analysis of hydrodynamic and inertial effects, Transport in Porous Media, Volume 37 (1999), pp. 25-54
[12] Particle capture in porous media when physico-chemical effects dominate, Chem. Eng. Sci., Volume 54 (1999), pp. 3801-3813
[13] Water and waste water filtration: Concepts and applications, Environ. Sci. Technol., Volume 5 (1971) no. 11, pp. 1105-1112
[14] Colloidal Dispersions, Cambridge University Press, 1989
[15] Deposition and re-entrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications, Environ. Sci. Technol., Volume 38 (2004), pp. 210-220
[16] Aggregation and deposition kinetics of mobile colloidal particles in natural porous media, Colloids and Surfaces A, Volume 191 (2001), pp. 179-188
[17] Experimental determination of colloid deposition rates and collision efficiencies in natural porous media, Water Res. Res., Volume 33 (1997) no. 5, pp. 1129-1137
[18] On the critical salt concentrations for particle detachment in homogeneous Hanford sediments, Geoderma, Volume 124 (2005), pp. 121-132
[19] Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Advances in Colloid and Interface Science, Volume 119 (2006), pp. 71-96
[20] The shadow effect in colloid transport and deposition dynamics in granular porous media: Measurements and mechanisms, Environ. Sci. Technol., Volume 34 (2000), pp. 3680-3689
[21] Flow-induced surface blocking effects in adsorption of colloid particles, Journal of Colloid and Interface Science, Volume 174 (1995), pp. 130-141
[22] Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavourable conditions, Environ. Sci. Technol., Volume 39 (2005), pp. 4012-4020
[23] Mechanistic basis of particle detachment from granular media, Environ. Sci. Technol., Volume 37 (2003), pp. 2317-2322
[24] Prediction of colloid detachment in a model porous media: Hydrodynamics, Chem. Eng. Sci., Volume 55 (2000), pp. 1523-1532
[25] Use of gamma ray attenuation technique to study colloid deposition in porous media, Experiments in Fluids, Volume 37 (2004), pp. 665-672
[26] Modeling colloid attachment, straining, and exclusion in saturated porous media, Environ. Sci. Technol., Volume 37 (2003), pp. 2242-2250
[27] Transport of cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration, Environ. Sci. Technol., Volume 38 (2004), pp. 5932-5938
[28] Filtration in a porous granular medium: 1 Simulation of pore-scale particle deposition and clogging, Transport in Porous Media, Volume 65 (2006), pp. 53-87
Cited by Sources:
Comments - Policy