The Note presents the formulation of a class of two-scale damage models involving a micro-structural length. A homogenization method based on asymptotic developments is employed to deduce the macroscopic damage equations. The damage model completely results from energy-based micro-crack propagation laws, without supplementary phenomenological assumptions.
We show that the resulting two-scale model has the property of capturing micro-structural lengths. When damage evolves, the micro-structural length is given by the ratio of the surface density of energy dissipated during the micro-crack growth and the macroscopic damage energy release rate per unit volume of the material.
The use of fracture criteria based on resistance curves or power laws for sub-critical growth of micro-cracks leads to quasi-brittle and, respectively, time-dependent damage models.
Accepté le :
Publié le :
Cristian Dascalu 1
@article{CRMECA_2009__337_9-10_645_0, author = {Cristian Dascalu}, title = {A two-scale damage model with material length}, journal = {Comptes Rendus. M\'ecanique}, pages = {645--652}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.008}, language = {en}, }
Cristian Dascalu. A two-scale damage model with material length. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 645-652. doi : 10.1016/j.crme.2009.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.008/
[1] Formulation d'une loi d'endommagement d'un matriau lastique, C. R. Acad. Sci. Paris, Volume 292 (1981), pp. 1309-1312
[2] Mécanique de la rupture fragile et ductile, Hermes, Paris, 2003
[3] Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, FL, 1997
[4] Approach by homogenization of some linear and nonlinear problems in solid mechanics (J.-P. Boehler, ed.), Plastic Behavior of Anisotropic Solids, Editions du CNRS, Paris, 1985, pp. 77-117
[5] Un modèle de matériau microfissuré pour les bétons et les roches, J. Mec. Theor. Appl., Volume 5 (1986), pp. 471-513
[6] Damage constitutive relations for composite materials, Engrg. Fract. Mech., Volume 25 (2004), pp. 713-728
[7] A micromechanical analysis of damage propagation in fluid-saturated cracked media, C. R. Mecanique, Volume 334 (2006), pp. 440-446
[8] Finite element analysis of deformation of strain-softening materials, Int. J. Numer. Methods Engrg., Volume 17 (1981), pp. 327-334
[9] A consistent characteristic length for smeared cracking models, Int. J. Numer. Methods Engrg., Volume 28 (1989), pp. 461-474
[10] Scaling of quasi-brittle fracture: Asymptotic analysis, Int. J. Fracture, Volume 83 (1997), pp. 19-40
[11] Damage and size effects in solids: A homogenization approach, Int. J. Solids Struct., Volume 45 (2008), pp. 409-430
[12] A multiscale approach to damage configurational forces, Int. J. Fracture, Volume 147 (2007) no. 1–4, pp. 285-294
[13] Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys., vol. 127, Springer, Berlin, 1980
[14] On the behavior of a cracked elastic body with (or without) friction, J. Mec. Theor. Appl., Volume 1 (1982), pp. 195-209
[15] Dynamic fatigue of glass, J. Appl. Phys., Volume 29 (1958), pp. 1657-1662
[16] Effect of structure on environmentally assisted subcritical crack growth in brittle materials, Int. J. Fracture, Volume 87 (1997), pp. 21-46
Cité par Sources :
Commentaires - Politique