[Approche couplée DEM-LBM 3D de prédiction de la boulance des sables]
Cet article présente un modèle numérique 3D pour évaluer le début de boulance dans un milieu granulaire polydisperse saturé. Le modèle est basé sur l'étude de l'évolution de la contrainte intergranulaire verticale à l'intérieur d'un échantillon granulaire soumis à un gradient hydraulique ascendant croissant. Cette contrainte est calculée moyennant la Méthode des Eléments Discrets (DEM). Les forces hydrodynamiques sur les grains sont calculées en utilisant la Méthode Lattice Boltzmann (LBM). L'hypothèse principale utilisée est que les grains restent immobiles tant que l'état de boulance n'est pas atteint. Le gradient hydraulique critique obtenu par le modèle est en bonne concordance avec celui défini en mécanique des sols classique.
We present a 3D numerical model to assess the quick condition (the onset of the boiling phenomenon) in a saturated polydisperse granular material. We use the Discrete Element Method (DEM) to study the evolution of the vertical intergranular stress in a granular sample subjected to an increasing hydraulic gradient. The hydrodynamic forces on the grains of the sample are computed using the Lattice Boltzmann Method (LBM). The principal assumption used is that grains remain at rest until the boiling onset. We show that the obtained critical hydraulic gradient is close to that defined in classical soil mechanics.
Accepté le :
Publié le :
Mots-clés : Milieux granulaires, Sols, Éléments discrets, Lattice Boltzmann, Boulance du sable
M. Mansouri 1, 2 ; J.-Y. Delenne 1 ; M.S. El Youssoufi 1 ; A. Seridi 3
@article{CRMECA_2009__337_9-10_675_0, author = {M. Mansouri and J.-Y. Delenne and M.S. El Youssoufi and A. Seridi}, title = {A {3D} {DEM-LBM} approach for the assessment of the quick condition for sands}, journal = {Comptes Rendus. M\'ecanique}, pages = {675--681}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.010}, language = {en}, }
TY - JOUR AU - M. Mansouri AU - J.-Y. Delenne AU - M.S. El Youssoufi AU - A. Seridi TI - A 3D DEM-LBM approach for the assessment of the quick condition for sands JO - Comptes Rendus. Mécanique PY - 2009 SP - 675 EP - 681 VL - 337 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2009.09.010 LA - en ID - CRMECA_2009__337_9-10_675_0 ER -
%0 Journal Article %A M. Mansouri %A J.-Y. Delenne %A M.S. El Youssoufi %A A. Seridi %T A 3D DEM-LBM approach for the assessment of the quick condition for sands %J Comptes Rendus. Mécanique %D 2009 %P 675-681 %V 337 %N 9-10 %I Elsevier %R 10.1016/j.crme.2009.09.010 %G en %F CRMECA_2009__337_9-10_675_0
M. Mansouri; J.-Y. Delenne; M.S. El Youssoufi; A. Seridi. A 3D DEM-LBM approach for the assessment of the quick condition for sands. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 675-681. doi : 10.1016/j.crme.2009.09.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.010/
[1] Stress transmission in wet granular materials, European Physical Journal E, Volume 21 (2006), pp. 359-369
[2] Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials, Int. J. Numer. Anal. Meth. Geom., Volume 30 (2006) no. 3, pp. 213-228
[3] Coupled Lattice Boltzmann and Discrete Element modelling of fluid–particle interaction problems, Int. J. Numer. Meth. Engng., Volume 72 (2007), pp. 1111-1134
[4] Three-dimensional immersed boundary conditions for moving solids in the Lattice Boltzmann method, Int. J. Numer. Meth. Fluids, Volume 55 (2007), pp. 103-125
[5] Space-filling properties of polydisperse granular media, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), APS, Volume 76 (2007), p. 021301
[6] Viscous flow computations with the method of lattice Boltzmann equation, Progr. Aerosp. Sciences, Volume 39 (2003), pp. 329-367
[7] Numerical simulation of particular suspensions via a discretized Boltzmann equation, Part 2, Numerical results, J. Fluid Mech., Volume 271 (1994), pp. 311-339
[8] On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model, Phys. Fluids, Volume 9 (1997), pp. 1591-1598
[9] Introduction à la Géotechnique, Editions de l'Ecole Polytechnique de Montréal, 1991
- Coupled DFM-DEM-EFCM investigation on the suffusion in gap-graded clayey sands, Computers and Geotechnics, Volume 179 (2025), p. 107004 | DOI:10.1016/j.compgeo.2024.107004
- Effect of particle shape on the void space in granular materials: implications for the properties of granular filters, Granular Matter, Volume 26 (2024) no. 4 | DOI:10.1007/s10035-024-01452-0
- DEM filtration modelling for granular materials: Comparative analysis of dry and wet approaches, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 48 (2024) no. 3, p. 870 | DOI:10.1002/nag.3666
- Effect of gas content in macropores on hydraulic fracturing in rocks using a fully coupled DEM/CFD approach, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 45 (2021) no. 2, p. 234 | DOI:10.1002/nag.3160
- Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach, Acta Geotechnica, Volume 15 (2020) no. 2, p. 297 | DOI:10.1007/s11440-019-00799-6
- Fluid-driven fractures in granular media: Insights from numerical investigations, Physical Review E, Volume 101 (2020) no. 4 | DOI:10.1103/physreve.101.042903
- A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM, Computer Methods in Applied Mechanics and Engineering, Volume 346 (2019), p. 109 | DOI:10.1016/j.cma.2018.12.001
- DEM investigations of internal erosion: Grain transport in the light of micromechanics, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 1, p. 339 | DOI:10.1002/nag.2866
- Hydro‐micromechanical modeling of wave propagation in saturated granular crystals, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 5, p. 1115 | DOI:10.1002/nag.2920
- Analysis of fluid-particle interaction in granular materials using coupled SPH-DEM method, Powder Technology, Volume 353 (2019), p. 459 | DOI:10.1016/j.powtec.2019.05.052
- A coupled 3‐dimensional bonded discrete element and lattice Boltzmann method for fluid‐solid coupling in cohesive geomaterials, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 42 (2018) no. 12, p. 1405 | DOI:10.1002/nag.2799
- Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods, Physical Review E, Volume 97 (2018) no. 5 | DOI:10.1103/physreve.97.052902
- Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method, Powder Technology, Volume 335 (2018), p. 301 | DOI:10.1016/j.powtec.2018.05.006
- Numerical simulation of the quicksand phenomenon by a 3D coupled Discrete Element ‐ Lattice Boltzmann hydromechanical model, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 41 (2017) no. 3, p. 338 | DOI:10.1002/nag.2556
- A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Computer Methods in Applied Mechanics and Engineering, Volume 304 (2016), p. 546 | DOI:10.1016/j.cma.2016.02.020
- Coupled bonded particle and lattice Boltzmann method for modelling fluid-solid interaction, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 40 (2016) no. 10, p. 1383 | DOI:10.1002/nag.2481
- An Introduction to Discrete Element Method: A Meso-scale Mechanism Analysis of Granular Flow, Journal of Dispersion Science and Technology, Volume 36 (2015) no. 10, p. 1370 | DOI:10.1080/01932691.2014.984304
- Numerical simulation of sand production experiment using a coupled Lattice Boltzmann–Discrete Element Method, Journal of Petroleum Science and Engineering, Volume 135 (2015), p. 218 | DOI:10.1016/j.petrol.2015.09.019
- Coupled LBM–DEM Micro-scale Simulations of Cohesive Particle Erosion Due to Shear Flows, Transport in Porous Media, Volume 109 (2015) no. 1, p. 43 | DOI:10.1007/s11242-015-0500-2
- Pore‐scale modeling of fluid‐particles interaction and emerging poromechanical effects, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 38 (2014) no. 1, p. 51 | DOI:10.1002/nag.2198
- A Theory for Predicting Velocities of Soil Particles and Seepage Flow During Upward Seepage Failure, Japanese Geotechnical Journal, Volume 9 (2014) no. 4, p. 511 | DOI:10.3208/jgs.9.511
- Numerical Simulation of Sand Migration and Seepage Flow During Seepage Failure by CWENO Scheme, Japanese Geotechnical Journal, Volume 9 (2014) no. 4, p. 521 | DOI:10.3208/jgs.9.521
- A fictitious domain approach for the simulation of dense suspensions, Journal of Computational Physics, Volume 256 (2014), p. 367 | DOI:10.1016/j.jcp.2013.09.015
- Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe, Powder Technology, Volume 254 (2014), p. 299 | DOI:10.1016/j.powtec.2014.01.048
- An interdisciplinary approach towards improved understanding of soil deformation during compaction, Soil and Tillage Research, Volume 128 (2013), p. 61 | DOI:10.1016/j.still.2012.10.004
- Onset of Immersed Granular Avalanches by DEM-LBM Approach, Advances in Bifurcation and Degradation in Geomaterials, Volume 11 (2011), p. 109 | DOI:10.1007/978-94-007-1421-2_14
Cité par 26 documents. Sources : Crossref
Commentaires - Politique