Comptes Rendus
A 3D DEM-LBM approach for the assessment of the quick condition for sands
[Approche couplée DEM-LBM 3D de prédiction de la boulance des sables]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 675-681.

Cet article présente un modèle numérique 3D pour évaluer le début de boulance dans un milieu granulaire polydisperse saturé. Le modèle est basé sur l'étude de l'évolution de la contrainte intergranulaire verticale à l'intérieur d'un échantillon granulaire soumis à un gradient hydraulique ascendant croissant. Cette contrainte est calculée moyennant la Méthode des Eléments Discrets (DEM). Les forces hydrodynamiques sur les grains sont calculées en utilisant la Méthode Lattice Boltzmann (LBM). L'hypothèse principale utilisée est que les grains restent immobiles tant que l'état de boulance n'est pas atteint. Le gradient hydraulique critique obtenu par le modèle est en bonne concordance avec celui défini en mécanique des sols classique.

We present a 3D numerical model to assess the quick condition (the onset of the boiling phenomenon) in a saturated polydisperse granular material. We use the Discrete Element Method (DEM) to study the evolution of the vertical intergranular stress in a granular sample subjected to an increasing hydraulic gradient. The hydrodynamic forces on the grains of the sample are computed using the Lattice Boltzmann Method (LBM). The principal assumption used is that grains remain at rest until the boiling onset. We show that the obtained critical hydraulic gradient is close to that defined in classical soil mechanics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.09.010
Keywords: Granular media, Soils, Discrete elements, Lattice Boltzmann, Sand boiling
Mots-clés : Milieux granulaires, Sols, Éléments discrets, Lattice Boltzmann, Boulance du sable

M. Mansouri 1, 2 ; J.-Y. Delenne 1 ; M.S. El Youssoufi 1 ; A. Seridi 3

1 Laboratoire de mécanique et génie civil, UMR UM2-CNRS 5508, université Montpellier 2, cc 048, place E. Bataillon, 34095 Montpellier cedex 5, France
2 Département de génie civil, université Ferhat-bbas, 19000, Setif, Algeria
3 Laboratoire de mécanique des solides et systèmes (LM2S), université M'hamed-Bougara, Boumerdes, Algeria
@article{CRMECA_2009__337_9-10_675_0,
     author = {M. Mansouri and J.-Y. Delenne and M.S. El Youssoufi and A. Seridi},
     title = {A {3D} {DEM-LBM} approach for the assessment of the quick condition for sands},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {675--681},
     publisher = {Elsevier},
     volume = {337},
     number = {9-10},
     year = {2009},
     doi = {10.1016/j.crme.2009.09.010},
     language = {en},
}
TY  - JOUR
AU  - M. Mansouri
AU  - J.-Y. Delenne
AU  - M.S. El Youssoufi
AU  - A. Seridi
TI  - A 3D DEM-LBM approach for the assessment of the quick condition for sands
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 675
EP  - 681
VL  - 337
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2009.09.010
LA  - en
ID  - CRMECA_2009__337_9-10_675_0
ER  - 
%0 Journal Article
%A M. Mansouri
%A J.-Y. Delenne
%A M.S. El Youssoufi
%A A. Seridi
%T A 3D DEM-LBM approach for the assessment of the quick condition for sands
%J Comptes Rendus. Mécanique
%D 2009
%P 675-681
%V 337
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2009.09.010
%G en
%F CRMECA_2009__337_9-10_675_0
M. Mansouri; J.-Y. Delenne; M.S. El Youssoufi; A. Seridi. A 3D DEM-LBM approach for the assessment of the quick condition for sands. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 675-681. doi : 10.1016/j.crme.2009.09.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.010/

[1] V. Richefeu; F. Radjai; M.S. El Youssoufi Stress transmission in wet granular materials, European Physical Journal E, Volume 21 (2006), pp. 359-369

[2] F. Soulié; F. Cherblanc; M.S. El Youssoufi; C. Saix Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials, Int. J. Numer. Anal. Meth. Geom., Volume 30 (2006) no. 3, pp. 213-228

[3] Y.T. Feng; K. Han; D.R.J. Owen Coupled Lattice Boltzmann and Discrete Element modelling of fluid–particle interaction problems, Int. J. Numer. Meth. Engng., Volume 72 (2007), pp. 1111-1134

[4] O.E. Strack; B.K. Cook Three-dimensional immersed boundary conditions for moving solids in the Lattice Boltzmann method, Int. J. Numer. Meth. Fluids, Volume 55 (2007), pp. 103-125

[5] C. Voivret; F. Radjai; J.-Y. Delenne; M.S. El Youssoufi Space-filling properties of polydisperse granular media, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), APS, Volume 76 (2007), p. 021301

[6] D. Yu; R. Mei; L.-S. Luo; W. Shyy Viscous flow computations with the method of lattice Boltzmann equation, Progr. Aerosp. Sciences, Volume 39 (2003), pp. 329-367

[7] A.J.C. Ladd Numerical simulation of particular suspensions via a discretized Boltzmann equation, Part 2, Numerical results, J. Fluid Mech., Volume 271 (1994), pp. 311-339

[8] Q. Zou; X. He On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model, Phys. Fluids, Volume 9 (1997), pp. 1591-1598

[9] R.D. Holtz; W.D. Kovacs Introduction à la Géotechnique, Editions de l'Ecole Polytechnique de Montréal, 1991

  • Shihang Chen; Mengli Li; Fengshou Zhang; Tuo Wang Coupled DFM-DEM-EFCM investigation on the suffusion in gap-graded clayey sands, Computers and Geotechnics, Volume 179 (2025), p. 107004 | DOI:10.1016/j.compgeo.2024.107004
  • Ali Abdallah; Eric Vincens; Hélène Magoariec; Mohsen Ardabilian; Christophe Picault Effect of particle shape on the void space in granular materials: implications for the properties of granular filters, Granular Matter, Volume 26 (2024) no. 4 | DOI:10.1007/s10035-024-01452-0
  • Ali Abdallah; Eric Vincens; Hélène Magoariec; Christophe Picault DEM filtration modelling for granular materials: Comparative analysis of dry and wet approaches, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 48 (2024) no. 3, p. 870 | DOI:10.1002/nag.3666
  • M. Krzaczek; M. Nitka; J. Tejchman Effect of gas content in macropores on hydraulic fracturing in rocks using a fully coupled DEM/CFD approach, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 45 (2021) no. 2, p. 234 | DOI:10.1002/nag.3160
  • M. Krzaczek; M. Nitka; J. Kozicki; J. Tejchman Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach, Acta Geotechnica, Volume 15 (2020) no. 2, p. 297 | DOI:10.1007/s11440-019-00799-6
  • Zhuang Sun; Zihao Li; D. Nicolas Espinoza; Matthew T. Balhoff Fluid-driven fractures in granular media: Insights from numerical investigations, Physical Review E, Volume 101 (2020) no. 4 | DOI:10.1103/physreve.101.042903
  • Min Wang; Y.T. Feng; D.R.J. Owen; T.M. Qu A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM, Computer Methods in Applied Mechanics and Engineering, Volume 346 (2019), p. 109 | DOI:10.1016/j.cma.2018.12.001
  • Antoine Wautier; Stéphane Bonelli; François Nicot DEM investigations of internal erosion: Grain transport in the light of micromechanics, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 1, p. 339 | DOI:10.1002/nag.2866
  • Hongyang Cheng; Stefan Luding; Nicolás Rivas; Jens Harting; Vanessa Magnanimo Hydro‐micromechanical modeling of wave propagation in saturated granular crystals, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 5, p. 1115 | DOI:10.1002/nag.2920
  • Wen-Jie Xu; Xue-Yang Dong; Wen-Tao Ding Analysis of fluid-particle interaction in granular materials using coupled SPH-DEM method, Powder Technology, Volume 353 (2019), p. 459 | DOI:10.1016/j.powtec.2019.05.052
  • Min Wang; Y.T. Feng; G.N. Pande; T.T. Zhao A coupled 3‐dimensional bonded discrete element and lattice Boltzmann method for fluid‐solid coupling in cohesive geomaterials, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 42 (2018) no. 12, p. 1405 | DOI:10.1002/nag.2799
  • Jeff Ngoma; Pierre Philippe; Stéphane Bonelli; Farhang Radjaï; Jean-Yves Delenne Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods, Physical Review E, Volume 97 (2018) no. 5 | DOI:10.1103/physreve.97.052902
  • Wen-Tao Ding; Wen-Jie Xu Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method, Powder Technology, Volume 335 (2018), p. 301 | DOI:10.1016/j.powtec.2018.05.006
  • Mouloud Mansouri; Moulay Said El Youssoufi; François Nicot Numerical simulation of the quicksand phenomenon by a 3D coupled Discrete Element ‐ Lattice Boltzmann hydromechanical model, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 41 (2017) no. 3, p. 338 | DOI:10.1002/nag.2556
  • Kun Wang; WaiChing Sun A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain, Computer Methods in Applied Mechanics and Engineering, Volume 304 (2016), p. 546 | DOI:10.1016/j.cma.2016.02.020
  • Min Wang; Y.T. Feng; C.Y. Wang Coupled bonded particle and lattice Boltzmann method for modelling fluid-solid interaction, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 40 (2016) no. 10, p. 1383 | DOI:10.1002/nag.2481
  • Yrjö Jun Huang; Ole Jørgen Nydal; Chenhui Ge; Baodian Yao An Introduction to Discrete Element Method: A Meso-scale Mechanism Analysis of Granular Flow, Journal of Dispersion Science and Technology, Volume 36 (2015) no. 10, p. 1370 | DOI:10.1080/01932691.2014.984304
  • Ali Ghassemi; Ali Pak Numerical simulation of sand production experiment using a coupled Lattice Boltzmann–Discrete Element Method, Journal of Petroleum Science and Engineering, Volume 135 (2015), p. 218 | DOI:10.1016/j.petrol.2015.09.019
  • Paul E. Brumby; Toru Sato; Jiro Nagao; Norio Tenma; Hideo Narita Coupled LBM–DEM Micro-scale Simulations of Cohesive Particle Erosion Due to Shear Flows, Transport in Porous Media, Volume 109 (2015) no. 1, p. 43 | DOI:10.1007/s11242-015-0500-2
  • E. Catalano; B. Chareyre; E. Barthélémy Pore‐scale modeling of fluid‐particles interaction and emerging poromechanical effects, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 38 (2014) no. 1, p. 51 | DOI:10.1002/nag.2198
  • Kazunori FUJISAWA; Akira MURAKAMI A Theory for Predicting Velocities of Soil Particles and Seepage Flow During Upward Seepage Failure, Japanese Geotechnical Journal, Volume 9 (2014) no. 4, p. 511 | DOI:10.3208/jgs.9.511
  • Kazunori FUJISAWA; Kosuke TSUJIMURA; Akira MURAKAMI Numerical Simulation of Sand Migration and Seepage Flow During Seepage Failure by CWENO Scheme, Japanese Geotechnical Journal, Volume 9 (2014) no. 4, p. 521 | DOI:10.3208/jgs.9.521
  • Stany Gallier; Elisabeth Lemaire; Laurent Lobry; François Peters A fictitious domain approach for the simulation of dense suspensions, Journal of Computational Physics, Volume 256 (2014), p. 367 | DOI:10.1016/j.jcp.2013.09.015
  • Xilin Cui; Jun Li; Andrew Chan; David Chapman Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe, Powder Technology, Volume 254 (2014), p. 299 | DOI:10.1016/j.powtec.2014.01.048
  • T. Keller; M. Lamand; S. Peth; M. Berli; J.-Y. Delenne; W. Baumgarten; W. Rabbel; F. Radja; J. Rajchenbach; A.P.S. Selvadurai; D. Or An interdisciplinary approach towards improved understanding of soil deformation during compaction, Soil and Tillage Research, Volume 128 (2013), p. 61 | DOI:10.1016/j.still.2012.10.004
  • Jean-Yves Delenne; M. Mansouri; F. Radjaї; M. S. El Youssoufi; A. Seridi Onset of Immersed Granular Avalanches by DEM-LBM Approach, Advances in Bifurcation and Degradation in Geomaterials, Volume 11 (2011), p. 109 | DOI:10.1007/978-94-007-1421-2_14

Cité par 26 documents. Sources : Crossref

Commentaires - Politique