[Efficacité amortissante du schéma explicite dissipatif de Tchamwa–Wielgosz pour des chargements impulsionnels]
To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa–Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used.
Dans le cadre de problèmes de dynamique ou de propagation d'ondes, l'utilisation d'une méthode dissipative est souvent nécessaire pour réduire les oscillations parasites provenant des discrétisations spatiales et temporelles. Parmi les nombreuses méthodes existantes, le schéma explicite dissipatif de Tchamwa–Wielgosz amortit ces oscillations en ciblant son amortissement sur l'énergie des hautes fréquences. Une étude théorique montre ici le décentrage à droite de ce schéma et interprète son amortissement comme une perturbation des déplacements nodaux. L'étude FEM sur des cas de compression impulsionnelle 1-D et 3-D montre l'utilité d'afficher l'amortissement en fonction du nombre de pas de temps et permet d'obtenir une efficacité amortissante constante quelque soit la taille de l'élément utilisé dans le maillage régulier. L'étude de la réponse obtenue pour des maillages irréguliers montre la légère sensibilité de l'amortissement du schéma de TW à la discrétisation spatiale utilisée.
Accepté le :
Publié le :
Mots-clés : Systèmes dynamiques, Algorithme d'intégration temporelle explicite et dissipatif, Schéma de Tchamwa–Wielgosz
Laurent Mahéo 1, 2 ; Vincent Grolleau 2, 3 ; Gérard Rio 2
@article{CRMECA_2009__337_11-12_722_0, author = {Laurent Mah\'eo and Vincent Grolleau and G\'erard Rio}, title = {Damping efficiency of the {Tchamwa{\textendash}Wielgosz} explicit dissipative scheme under instantaneous loading conditions}, journal = {Comptes Rendus. M\'ecanique}, pages = {722--732}, publisher = {Elsevier}, volume = {337}, number = {11-12}, year = {2009}, doi = {10.1016/j.crme.2009.10.005}, language = {en}, }
TY - JOUR AU - Laurent Mahéo AU - Vincent Grolleau AU - Gérard Rio TI - Damping efficiency of the Tchamwa–Wielgosz explicit dissipative scheme under instantaneous loading conditions JO - Comptes Rendus. Mécanique PY - 2009 SP - 722 EP - 732 VL - 337 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2009.10.005 LA - en ID - CRMECA_2009__337_11-12_722_0 ER -
%0 Journal Article %A Laurent Mahéo %A Vincent Grolleau %A Gérard Rio %T Damping efficiency of the Tchamwa–Wielgosz explicit dissipative scheme under instantaneous loading conditions %J Comptes Rendus. Mécanique %D 2009 %P 722-732 %V 337 %N 11-12 %I Elsevier %R 10.1016/j.crme.2009.10.005 %G en %F CRMECA_2009__337_11-12_722_0
Laurent Mahéo; Vincent Grolleau; Gérard Rio. Damping efficiency of the Tchamwa–Wielgosz explicit dissipative scheme under instantaneous loading conditions. Comptes Rendus. Mécanique, Volume 337 (2009) no. 11-12, pp. 722-732. doi : 10.1016/j.crme.2009.10.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.10.005/
[1] A method for numerical calculation of hydrodynamic shocks, J. Appl. Phys., Volume 21 (1950), pp. 232-237
[2] R. Landshoff, A numerical method for treating fluid flow in the presence of shocks, Technical report, Los Alamos National Laboratory, 1955
[3] , Hibbitt, Karlsson & Sorensen, Inc., 2007 (ABAQUS Theory Manual, Version 6.7)
[4] O. Hallquist, LS-Dyna 3D theoretical manual, Livermore Software Technology, 1998
[5] Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering Structural Dynamics, Volume 5 (1977), pp. 283-292
[6] An alpha modification of Newmark's method, Int. J. Numer. Meth. Eng., Volume 15 (1981), pp. 1562-1566
[7] A method of computation for structural dynamics, J. Eng. Mech. Div. ASCE (1959), pp. 67-94
[8] A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method, J. Appl. Mech., Volume 60 (1993), pp. 371-375
[9] Numerical dissipation in time-step integration algorithms for structural dynamic analysis, Prog. Struct. Eng. Mater., Volume 5 (2003), pp. 167-180
[10] A new family of explicit time integration methods for linear and non-linear structural dynamics, Int. J. Numer. Methods Eng., Volume 37 (1994), pp. 3961-3976
[11] Two simple fast integration methods for large-scale dynamic problems in engineering, Int. J. Numer. Methods Eng., Volume 39 (1996), pp. 4199-4214
[12] Explicit time integration algorithms for structural dynamics with optimal numerical dissipation, Comput. Methods Appl. Mech. Eng., Volume 137 (1996), pp. 175-188
[13] B. Tchamwa, Contributions à l'étude des méthodes d'intégration directe explicites en dynamique non linéaire des structures, PhD thesis, Ecole Centrale de Nantes, 1997 (in French)
[14] Numerical damping of spurious oscillations: A comparison between bulk-viscosity and dissipative explicit algorithms (A.A. Millpress, ed.), Eurodyn 2005 Conference, Paris, Rotterdam, 2005
[15] A. Soive, Apports à la méthode des éléments finis appliqués aux calculs de structures en dynamique rapide et amortissement numérique, PhD thesis, Université de Bretagne Sud, 2003 (in French)
[16] Une comparaison des schémas d'intégration temporelle explicites de Chung–Lee et Tchamwa–Wielgosz, C. R. Mécanique, Volume 332 (2004), pp. 927-932
[17] Comparative study of numerical explicit time integration algorithms, Adv. Eng. Softw., Volume 36 (2005), pp. 252-265
[18] L. Mahéo, Etude des effets dissipatifs de différents schémas d'intégration temporelle en calcul dynamique par éléments finis, PhD thesis, Université de Bretagne Sud, 2006 (in French)
[19] Comparative study of numerical explicit schemes for impact problem, Int. J. Impact Eng., Volume 35 (2008), pp. 1688-1694
[20] G. Rio, Herezh++: FEM software for large transformations in solids, Dépôt APP (Agence pour la Protection des Programmes) – Certification IDDN.FR.010.0106078.000.R.P.2006.035.20600, Laboratoire d'Ingénierie des Matériaux de Bretagne, 2009
[21] , 2009 http://web.univ-ubs.fr/limatb Laboratoire d'Ingénierie des MATériaux de Bretagne (Limatb)
[22] Mechanical Vibrations: Theory and Applications to Structural Dynamics, John Wiley & Son, Ltd., 1997
- Application of the partial Dirichlet–Neumann contact algorithm to simulate low-velocity impact events on composite structures, Composites Part A: Applied Science and Manufacturing, Volume 167 (2023), p. 107424 | DOI:10.1016/j.compositesa.2022.107424
- A DEM bonded particle model compatible with stress/strain constitutive relations, International Journal of Rock Mechanics and Mining Sciences, Volume 170 (2023), p. 105437 | DOI:10.1016/j.ijrmms.2023.105437
- An improved quartic B-spline based explicit time integration algorithm for structural dynamics, European Journal of Mechanics. A. Solids, Volume 91 (2022), p. 23 (Id/No 104407) | DOI:10.1016/j.euromechsol.2021.104407 | Zbl:1507.74574
- A high-order accurate explicit time integration method based on cubic B-spline interpolation and weighted residual technique for structural dynamics, International Journal for Numerical Methods in Engineering, Volume 122 (2021) no. 2, pp. 431-454 | DOI:10.1002/nme.6543 | Zbl:1548.65156
- An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics, International Journal for Numerical Methods in Engineering, Volume 122 (2021) no. 4, pp. 1089-1132 | DOI:10.1002/nme.6574 | Zbl:1548.65189
- Analytic laws for direct calibration of discrete element modeling of brittle elastic media using cohesive beam model, Computational Particle Mechanics, Volume 6 (2019) no. 3, p. 393 | DOI:10.1007/s40571-018-00221-0
- A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model, Computer Methods in Applied Mechanics and Engineering, Volume 350 (2019), pp. 100-122 | DOI:10.1016/j.cma.2019.03.013 | Zbl:1441.74193
- A discrete element thermo-mechanical modelling of diffuse damage induced by thermal expansion mismatch of two-phase materials, Computer Methods in Applied Mechanics and Engineering, Volume 318 (2017), pp. 898-916 | DOI:10.1016/j.cma.2017.01.029 | Zbl:1439.74245
- Bibliography, 3D Discrete Element Workbench for Highly Dynamic Thermo‐Mechanical Analysis (2015), p. 175 | DOI:10.1002/9781119116356.biblio
- Reducing spurious oscillations in discontinuous wave propagation simulation using high-order finite elements, Computers Mathematics with Applications, Volume 70 (2015) no. 7, pp. 1640-1658 | DOI:10.1016/j.camwa.2015.06.022 | Zbl:1443.65217
- Bibliography, Discrete Element Method to Model 3D Continuous Materials (2015), p. 145 | DOI:10.1002/9781119103042.biblio
- Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa-Wielgosz scheme, Computational Mechanics, Volume 51 (2013) no. 1, pp. 109-128 | DOI:10.1007/s00466-012-0708-8 | Zbl:1398.74366
- Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter, Computer Methods in Applied Mechanics and Engineering, Volume 265 (2013), pp. 136-147 | DOI:10.1016/j.cma.2013.06.008 | Zbl:1286.74003
- Discrete element method to simulate continuous material by using the cohesive beam model, Computer Methods in Applied Mechanics and Engineering, Volume 213-216 (2012), pp. 113-125 | DOI:10.1016/j.cma.2011.12.002 | Zbl:1243.74197
- On the use of some numerical damping methods of spurious oscillations in the case of elastic wave propagation, Mechanics Research Communications, Volume 38 (2011) no. 2, pp. 81-88 | DOI:10.1016/j.mechrescom.2011.01.006 | Zbl:1272.74234
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique