In this study, microscopic deterministic and analytical contact models that take the properties of engineering surfaces into account have been developed. Geometrical characteristics of rough surfaces are deduced using the standard procedure for roughness and waviness parameters. These models allow the analyses of the asperities behaviour and real contact area. Comparison between the analytical and deterministic results shows a good correlation. The microscopic model is often enabling to simulate the real structure with complex geometry, so, a homogenisation technique has been developed. The interface of the equivalent model has been governed by the microscopic model results. Sensitivity of models responses to the random pulling of surfaces parameters has been also analysed.
Accepté le :
Publié le :
Saoussen Belghith 1 ; Salah Mezlini 1 ; Hedi BelhadjSalah 1 ; Jean-Louis Ligier 2
@article{CRMECA_2010__338_1_48_0, author = {Saoussen Belghith and Salah Mezlini and Hedi BelhadjSalah and Jean-Louis Ligier}, title = {Modeling of contact between rough surfaces using homogenisation technique}, journal = {Comptes Rendus. M\'ecanique}, pages = {48--61}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2010}, doi = {10.1016/j.crme.2009.12.003}, language = {en}, }
TY - JOUR AU - Saoussen Belghith AU - Salah Mezlini AU - Hedi BelhadjSalah AU - Jean-Louis Ligier TI - Modeling of contact between rough surfaces using homogenisation technique JO - Comptes Rendus. Mécanique PY - 2010 SP - 48 EP - 61 VL - 338 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2009.12.003 LA - en ID - CRMECA_2010__338_1_48_0 ER -
%0 Journal Article %A Saoussen Belghith %A Salah Mezlini %A Hedi BelhadjSalah %A Jean-Louis Ligier %T Modeling of contact between rough surfaces using homogenisation technique %J Comptes Rendus. Mécanique %D 2010 %P 48-61 %V 338 %N 1 %I Elsevier %R 10.1016/j.crme.2009.12.003 %G en %F CRMECA_2010__338_1_48_0
Saoussen Belghith; Salah Mezlini; Hedi BelhadjSalah; Jean-Louis Ligier. Modeling of contact between rough surfaces using homogenisation technique. Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 48-61. doi : 10.1016/j.crme.2009.12.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.12.003/
[1] The Hardness of Metals, Oxford University Press, 1951
[2] Contact Mechanics, Cambridge University Press, 1985
[3] Inclusion of “interaction” in the Greenwood and Williamson contact theory, Wear, Volume 265 (2008), pp. 729-734
[4] Contact of nominally flat rough surfaces, Proc. R. Soc. A, Volume 295 (1966), pp. 300-319
[5] On the elastic contact of elastic solids, J. Reine Angew. Math., Volume 92 (1881), pp. 156-171
[6] Specifying surface quality – A method based on accurate measurement and comparison, Mech. Eng., Volume 55 (1933), p. 569
[7] Rough surfaces and elastoplastic contact, C. R. Acad. Sci. Paris, Volume 2 (2001) no. 4, pp. 709-715
[8] Modélisation de la topographie microgéometrique Application à l'écrasement de surfaces, Matériaux et techniques, Volume 3–4 (2000), pp. 33-40
[9] Load transmission by elastic, elasto-plastic or fully plastic deformation of rough interface asperities, Mech. Mater. (2001), pp. 617-633
[10] A multi-scale model for contact between rough surfaces, Wear, Volume 261 (2006), pp. 1337-1347
[11] Basic principles of rough surface contact analysis using numerical methods, Tribol. Int., Volume 29 (1996) no. 8, pp. 639-650
[12] On elastic contact of rough surfaces: Numerical experiments and comparisons with recent theories, Wear, Volume 261 (2006), pp. 1102-1113
[13] Linear elastic contact of the Weierstrass profile, Proc. R. Soc. London A, Volume 456 (2000), pp. 387-405
[14] Theory of rubber friction and contact mechanics, J. Chem. Phys., Volume 115 (2001) no. 8, pp. 3840-3861
[15] Elastoplastic contact between randomly rough surfaces, Phys. Rev. Lett., Volume 87 (2001) no. 11 (art. No. 116101)
[16] Normal contact of fractal surfaces – Experimental and numerical investigations, Wear, Volume 264 (2008), pp. 589-598
[17] Surface separation and contact resistance considering sinusoidal elastic–plastic multi-scale rough surface contact, Wear, Volume 268 ( January 2010 ) no. 1–2, pp. 190-201
[18] Determination of the real area for numerical simulation, Tribol. Int., Volume 42 (2009), pp. 897-901
[19] International Organisation for Standardisation (ISO), NF EN ISO 12085 (1988), Spécifications géométriques des produits – Méthode du profil – Paramètres liés aux motifs
[20] Statistical analysis of asperities on a rough surface, Wear, Volume 249 (2001), pp. 401-408
[21] F. Robbe-Valloire, Approche stochastique de l'analyse du contact statique entre surfaces rugueuses, Tribologie et conception mécanique, Saint-Ouen, 2004, pp. 155–165
[22] The properties of random surfaces of significance in their contact, Proc. R. Soc., Volume 316 (1970), pp. 97-121
[23] Random process model of rough surfaces, Journal of Lubrification Technology, Volume 93F (1971), pp. 398-407
- The Breakdown and Surface Characteristics of Polymer Interfaces Under HV Impulses, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 32 (2025) no. 1, p. 170 | DOI:10.1109/tdei.2024.3407728
- Review of Research on Tire–Pavement Contact Behavior, Coatings, Volume 14 (2024) no. 2, p. 157 | DOI:10.3390/coatings14020157
- Numerical study on tribology properties of textured surfaces based on a new contact model, Materials Today Communications, Volume 40 (2024), p. 109969 | DOI:10.1016/j.mtcomm.2024.109969
- Optimization of contact surfaces in assembly in the presence of form defects and interference, The International Journal of Advanced Manufacturing Technology, Volume 130 (2024) no. 3-4, p. 1495 | DOI:10.1007/s00170-023-12790-3
- Effect of Form Defect in Thin-Walled Cylinder Assembly, Journal of The Institution of Engineers (India): Series C, Volume 104 (2023) no. 3, p. 635 | DOI:10.1007/s40032-023-00946-9
- Effect of interference and form defect on the cohesion of the shrink-fit assembly, The International Journal of Advanced Manufacturing Technology, Volume 128 (2023) no. 5-6, p. 2407 | DOI:10.1007/s00170-023-12099-1
- Effect of form defect on pipe surfaces subjected to pressure at the assembly point, Advances in Mechanical Engineering, Volume 14 (2022) no. 7 | DOI:10.1177/16878132221109722
- Three-dimensional finite discrete element-based contact heat transfer model considering thermal cracking in continuous-discontinuous media, Computer Methods in Applied Mechanics and Engineering, Volume 388 (2022), p. 32 (Id/No 114228) | DOI:10.1016/j.cma.2021.114228 | Zbl:1507.74025
- Influence of Fluid on Seal and Assembly of Pipeline Fittings Based on the Multiscale Finite Element Model, Complexity, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/4960734
- Study on the relationship between interfacial heat transfer coefficient and interface pressure in squeeze casting by using microscopic contact model, International Journal of Thermal Sciences, Volume 152 (2020), p. 106300 | DOI:10.1016/j.ijthermalsci.2020.106300
- Boundary condition identification of a clamped honeycomb sandwich panel based on thin-layer element, Journal of Vibroengineering, Volume 21 (2019) no. 8, p. 2286 | DOI:10.21595/jve.2019.20725
- Stiffness identification of boundary conditions by using thin-layer element for parameterization, Vibroengineering Procedia, Volume 25 (2019), p. 201 | DOI:10.21595/vp.2019.20841
- A multi-scale finite element contact model for seal and assembly of twin ferrule pipeline fittings, Tribology International, Volume 125 (2018), p. 100 | DOI:10.1016/j.triboint.2018.04.028
- A stochastic model for contact surfaces at polymer interfaces subjected to an electrical field, Tribology International, Volume 127 (2018), p. 361 | DOI:10.1016/j.triboint.2018.03.003
- Factors influencing the tangential AC breakdown strength of solid-solid interfaces, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 23 (2016) no. 3, p. 1778 | DOI:10.1109/tdei.2016.005744
- Numerical EIM with 3D FFT for the contact with a smooth or rough surface involving complicated and distributed inhomogeneities, Tribology International, Volume 93 (2016), p. 91 | DOI:10.1016/j.triboint.2015.09.001
- Methodology for a computer-aided design of shrink fits that considers the roughness and form defects of the manufacturing process, Journal of Mechanical Science and Technology, Volume 29 (2015) no. 5, p. 2097 | DOI:10.1007/s12206-015-0431-4
- Design sensitivity analysis for the homogenized elasticity tensor of a polymer filled with rubber particles, International Journal of Solids and Structures, Volume 51 (2014) no. 3-4, p. 612 | DOI:10.1016/j.ijsolstr.2013.10.025
- Study of contact of rough surfaces: Modeling and experiment, Wear, Volume 311 (2014) no. 1-2, p. 167 | DOI:10.1016/j.wear.2014.01.009
- Modelling of interference fits with taking into account surfaces roughness with homogenization technique, International Journal of Mechanical Sciences, Volume 69 (2013), p. 21 | DOI:10.1016/j.ijmecsci.2013.01.012
- Thermo-mechanical modelling of the contact between rough surfaces using homogenisation technique, Mechanics Research Communications, Volume 53 (2013), p. 57 | DOI:10.1016/j.mechrescom.2013.08.004
- Application of contact analysis on evaluation of breakdown strength and PD inception field strength of solid-solid interfaces, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 19 (2012) no. 1, p. 1 | DOI:10.1109/tdei.2012.6148496
Cité par 22 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier