The numerical analysis of elastic wave propagation in unbounded media may be difficult to handle due to spurious waves reflected at the model artificial boundaries. Several sophisticated techniques, such as nonreflecting boundary conditions, infinite elements or absorbing layers (e.g. Perfectly Matched Layers) lead to an important reduction of such spurious reflections. In this Note, a simple and efficient absorbing layer method is proposed in the framework of the Finite Element Method. This method considers Rayleigh/Caughey damping in the absorbing layer and its principle is presented first. The efficiency of the method is then shown through 1D Finite Element simulations considering homogeneous and heterogeneous damping in the absorbing layer. 2D models are considered afterwards to assess the efficiency of the absorbing layer method for various wave types (surface waves, body waves) and incidences (normal to grazing). The method is shown to be efficient for different types of elastic waves and may thus be used for various elastodynamic problems in unbounded domains.
La simulation numérique de la propagation d'ondes élastiques en milieux infinis peut s'avérer délicate du fait des réflexions d'ondes parasites sur les frontières du modèle discrétisé. Plusieurs méthodes sophistiquées, telles que les frontières absorbantes, les éléments infinis ou les couches absorbantes (e.g. « Perfectly Matched Layers ») permettent une réduction importante des réflexions parasites. Dans cette Note, une méthode de couche absorbante simple et efficace est proposée dans le cadre de la méthode des éléments finis. Cette méthode s'appuie sur une formulation de l'amortissement dans la couche de type Rayleigh/Caughey et ses principes sont d'abord détaillés. L'efficacité de la méthode est alors démontrée grâce à des simulations unidimensionnelles en considérant un amortissement homogène ou variable dans la couche absorbante. Des modèles bidimensionnels permettent ensuite d'apprécier l'efficacité de la méthode de couche absorbante proposée pour différents types d'ondes (ondes de surface, ondes de volume) et des incidences variées (normale à rasante). La méthode s'avère ainsi efficace pour différents types d'ondes élastiques et pourrait être utilisée pour traiter divers problèmes élastodynamiques en milieux non bornés.
Accepted:
Published online:
Mot clés : Ondes, Milieux continus, Méthode des éléments finis, Élastodynamiques
Jean-François Semblat 1; Ali Gandomzadeh 1; Luca Lenti 1
@article{CRMECA_2010__338_1_24_0, author = {Jean-Fran\c{c}ois Semblat and Ali Gandomzadeh and Luca Lenti}, title = {A simple numerical absorbing layer method in elastodynamics}, journal = {Comptes Rendus. M\'ecanique}, pages = {24--32}, publisher = {Elsevier}, volume = {338}, number = {1}, year = {2010}, doi = {10.1016/j.crme.2009.12.004}, language = {en}, }
Jean-François Semblat; Ali Gandomzadeh; Luca Lenti. A simple numerical absorbing layer method in elastodynamics. Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 24-32. doi : 10.1016/j.crme.2009.12.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.12.004/
[1] P-SV wave propagation in heterogeneous media: velocity–stress finite-difference method, Geophysics, Volume 51 (1986), pp. 889-901
[2] 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bulletin of the Seismological Society of America, Volume 92 (2002) no. 8, pp. 3042-3066
[3] Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987
[4] Waves and Vibrations in Soils, IUSS Press, Pavia, Italy, 2009
[5] Boundary elements methods in dynamic analysis: Part II (1986–1996), Applied Mechanics Reviews (ASME), Volume 50 (1997) no. 3, pp. 149-197
[6] Boundary Integral Equation Methods for Solids and Fluids, Wiley, Chichester, United Kingdom, 1999
[7] A new fast multi-domain BEM to model seismic wave propagation and amplification in 3D geological structures, Geophys. J. Int., Volume 177 (2009) no. 2, pp. 509-531
[8] 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method, Journal of Seismology, Volume 1 (1997), pp. 237-251
[9] The spectral element method for elastic wave equations – Application to 2D and 3D seismic problems, Int. J. Numer. Meth. Eng., Volume 45 (1999), pp. 1139-1164
[10] Nonlinear viscoelastic wave propagation: an extension of Nearly Constant Attenuation models, Journal of Engineering Mechanics (ASCE), Volume 135 (2009) no. 11, pp. 1305-1314
[11] Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, Int. J. Numer. Meth. Eng., Volume 38 (1995), pp. 3745-3774
[12] Efficiency of higher order finite elements for the analysis of seismic wave propagation, Journal of Sound and Vibration, Volume 231 (2000) no. 2, pp. 460-467
[13] H. Modaressi, I. Benzenati, An absorbing boundary element for dynamic analysis of two-phase media, in: 10th World Conf. on Earthquake Engineering, Madrid, 1992, pp. 1157–1163
[14] A plane strain soil–structure interaction model, Earthquake Engineering and Structural Dynamics, Volume 16 (1988), pp. 1115-1128
[15] Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: Theory, Bulletin of the Seismological Society of America, Volume 93 (2003) no. 2, pp. 817-824
[16] A non-reflecting boundary condition for discrete acoustic and elastic waves, Geophysics, Volume 50 (1985), pp. 705-708
[17] Absorbing boundary conditions and surface waves, Geophysics, Volume 52 (1987), pp. 65-71
[18] Non-reflecting boundary conditions, J. Comput. Phys., Volume 94 (1991) no. 1, pp. 1-29
[19] High-order nonreflecting boundary conditions without high-order derivatives, J. Comput. Phys., Volume 170 (2001), pp. 849-870
[20] Diffraction of short waves modelled using new mapped wave envelope finite and infinite elements, Int. J. Numer. Meth. Eng., Volume 45 (1999), pp. 335-354
[21] Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation, Comput. Meth. Appl. Mech. Eng., Volume 192 (2003), pp. 1337-1375
[22] PML absorbing boundaries, Bulletin of the Seismological Society of America, Volume 93 (2003) no. 2, pp. 891-903
[23] The Newmark scheme as velocity–stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics, Geophys. J. Int., Volume 161 (2005), pp. 789-812
[24] An unsplit convolutional Perfectly Matched Layer improved at grazing incidence for the seismic wave equation, Geophysics, Volume 72 (2007) no. 5, pp. 155-167
[25] A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis, Bulletin of the Seismological Society of America, Volume 98 (2008) no. 4, pp. 1811-1836
[26] Time-domain modeling of constant-Q seismic waves using fractional derivatives, Pure Appl. Geophys., Volume 159 (2002) no. 7–8, pp. 1719-1736
[27] Numerical simulation of wavefields using a Padé approximant method, Geophys. J. Roy. Astron. Soc., Volume 78 (1984), pp. 105-118
[28] Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics, Volume 52 (1987) no. 9, pp. 1252-1264
[29] On the rheological models used for time-domain methods of seismic wave propagation, Geophys. Res. Lett., Volume 32 (2005), p. L01306
[30] Classical normal modes in damped linear systems, Journal of Applied Mechanics, Volume 27 (1960), pp. 269-271
[31] An proportional damping in explicit integration of dynamic structural systems, Int. J. Numer. Meth. Eng., Volume 41 (1998), pp. 1277-1296
[32] Dynamics of Structures, Theory and Applications to Earthquake Engineering, Pearson Prentice Hall, 2007 (876 pp)
[33] Rheological interpretation of Rayleigh damping, Journal of Sound and Vibration, Volume 206 (1997) no. 5, pp. 741-744
[34] Theory of Viscoelasticity. An Introduction, Academic Press, New York, USA, 1982
[35] Seismic response by variable damping finite elements, Journal of the Geotechnical Engineering Division (ASCE), Volume 100 (1974) no. 1, pp. 1-13
[36] J.F. Semblat, J.J. Brioist, Wave propagation in non-homogeneously damped medium: numerical vs experimental approach, in: 11th European Conf. on Earthquake Eng., Paris, France, 1998
[37] A mathematical representation of near-fault ground motions, Bulletin of the Seismological Society of America, Volume 93 (2003) no. 3, pp. 1099-1131
[38] T. Bourbié, O. Coussy, B. Zinzsner, Acoustics of porous media, Technip, Paris, France, 1987
Cited by Sources:
Comments - Policy