Comptes Rendus
Interaction of a self vibrating beam with chaotic external forces
Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 33-39.

Measuring the complexity of physical systems has been traditionally a problem in numerous engineering applications. Lin [Entropy 10 (1) (2008) 1–5] showed that the structural complexity is related to other properties of a solid such as symmetry and its stability over time. In Ratsaby [Entropy 10 (1) (2008) 6–14] a model was introduced which defines the complexity of a solid structure not by a qualitative notion of entropy but by an algorithmic notion of description complexity. According to the model, a dynamic structure in a random surrounding acts as an interfering entity that deforms randomness. In the current Note we report on the results of an empirical study that analyzes the output response of a simulated elastic beam subjected to a field of external random forces input. The relationship between the complexity of the system and the stochasticity of the output is shown to support this model and is a first indication that solids act similar to algorithmic selection rules.

La mesure de la complexité des systèmes physiques intervient dans de nombreuses applications des sciences de l'ingénieur. Lin [Entropy 10 (1) (2008) 1–5] a montré que la complexité structurelle d'un système est liée aux propriétés ayant trait à ses symétries géométriques ainsi qu'à sa stabilité dans le temps. Le modèle de Ratsaby [Entropy 10 (1) (2008) 6–14] suggère d'évaluer la complexité des systèmes physiques par analogie à la mesure de la complexité des algorithmes. Selon ce modèle, un système physique sollicité par un environnement chaotique réagit comme une entité qui absorbe une partie du caractère aléatoire des sollicitations qui s'exercent sur celui-ci. Cette Note a pour objet de présenter la réponse d'un système vibratoire simple soumis à un champ de forces aléatoires. On montrera principalement que la relation obtenue entre la complexité du système et le caractère aléatoire du champ de déplacements qui en résulte, est analogue à celle qui prévaut pour les règles de sélection des algorithmes informatiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2009.11.001
Keywords: Computer science, Structure complexity, Solids, Randomness
Mot clés : Informatique, Complexité structurelle, Solides, Caractère aléatoire

Joël Chaskalovic 1, 2; J. Ratsaby 3

1 Mathematics Department, Ariel University Center, 40700 Ariel, Israel
2 IJLRA, University Pierre and Marie Curie, 4, place Jussieu, 75252 Paris cedex 05, France
3 Engineering Department, Ariel University Center, 40700 Ariel, Israel
@article{CRMECA_2010__338_1_33_0,
     author = {Jo\"el Chaskalovic and J. Ratsaby},
     title = {Interaction of a self vibrating beam with chaotic external forces},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {33--39},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2010},
     doi = {10.1016/j.crme.2009.11.001},
     language = {en},
}
TY  - JOUR
AU  - Joël Chaskalovic
AU  - J. Ratsaby
TI  - Interaction of a self vibrating beam with chaotic external forces
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 33
EP  - 39
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2009.11.001
LA  - en
ID  - CRMECA_2010__338_1_33_0
ER  - 
%0 Journal Article
%A Joël Chaskalovic
%A J. Ratsaby
%T Interaction of a self vibrating beam with chaotic external forces
%J Comptes Rendus. Mécanique
%D 2010
%P 33-39
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crme.2009.11.001
%G en
%F CRMECA_2010__338_1_33_0
Joël Chaskalovic; J. Ratsaby. Interaction of a self vibrating beam with chaotic external forces. Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 33-39. doi : 10.1016/j.crme.2009.11.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.11.001/

[1] S. Pincus Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci., Volume 88 (1991), pp. 2297-2301

[2] S.K. Lin The nature of the chemical process. 1. Symmetry evolution – revised information theory, similarity principle and ugly symmetry, International Journal of Molecular Sciences, Volume 2 (2001), pp. 10-39

[3] S.K. Lin Gibbs paradox and the concepts of information, symmetry, similarity and their relationship, Entropy, Volume 10 (2008), pp. 1-5

[4] J. Ratsaby An algorithmic complexity interpretation of Lin's third law of information theory, Entropy, Volume 10 (2008) no. 1, pp. 6-14

[5] J. Ratsaby; J. Chaskalovic Algorithmic complexity and randomness in elastic solids (Technical Report No.) | arXiv

[6] A.N. Kolmogorov Three approaches to the quantitative definition of information, Problems of Information Transmission, Volume 1 (1965), pp. 1-17

[7] P. Gacs On the symmetry of algorithmic information, Soviet Mathematics Doklady, Volume 15 (1974), pp. 1477-1480

[8] P. Martin-Löf The definition of random sequences, Information and Control, Volume 9 (1966), pp. 602-619

[9] A.N. Kolmogorov On tables of random numbers, Theoretical Computer Science, Volume 207 (1998) no. 2, pp. 387-395

[10] C.P. Schnorr A unified approach to the definition of random sequences, Mathematical Systems Theory, Volume 5 (1971), pp. 246-258

[11] A.N. Kolmogorov On tables of random numbers, Sankhyaa, The Indian Journal of Statistics A, Volume 25 (1963), pp. 369-376

[12] A.E. Asarin Some properties of Kolmogorov δ random finite sequences, SIAM Theory of Probability and its Applications, Volume 32 (1987), pp. 507-508

[13] B. Durand; N. Vereshchagin Kolmogorov–Loveland stochasticity for finite strings, Information Processing Letters, Volume 91 (2004) no. 6, pp. 263-269

[14] R. Cilibrasi; P. Vitanyi Clustering by compression, IEEE Transactions on Information Theory, Volume 51 (2005) no. 4, pp. 1523-1545

[15] J. Ziv; A. Lempel A universal algorithm for sequential data compression, IEEE Transactions on Information Theory, Volume 23 (1977) no. 3, pp. 337-343

Cited by Sources:

Comments - Policy