[Une construction nouvelle des schémas invariants utilisant les repères mobiles]
On propose une procédure nouvelle de construction des repères mobiles permettant de rendre invariant les schémas de discrétisation en différences finies. Elle prend en compte l'ordre de consistance et garantit aux schémas invariants de meilleures performances que celles des schémas classiques. On illustre les performances de cette approche sur l'exemple de l'équation de Burgers.
We propose a new approach for moving frame construction that allows to make finite difference scheme invariant. This approach takes into account the order of accuracy and guarantees numerical properties of invariant schemes that overcome those of classical schemes. Benefits obtained with this process are illustrated with the Burgers equation.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Schéma invariant, Symétrie de Lie, Repères mobiles, Schéma aux différences finies, Intégrateur géométrique
Marx Chhay 1 ; Aziz Hamdouni 1
@article{CRMECA_2010__338_2_97_0, author = {Marx Chhay and Aziz Hamdouni}, title = {A new construction for invariant numerical schemes using moving frames}, journal = {Comptes Rendus. M\'ecanique}, pages = {97--101}, publisher = {Elsevier}, volume = {338}, number = {2}, year = {2010}, doi = {10.1016/j.crme.2010.01.001}, language = {en}, }
Marx Chhay; Aziz Hamdouni. A new construction for invariant numerical schemes using moving frames. Comptes Rendus. Mécanique, Volume 338 (2010) no. 2, pp. 97-101. doi : 10.1016/j.crme.2010.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.01.001/
[1] CRC Handbook of Lie Group Analysis of Differential Equations, vols. 1–3, CRC Press, Boca Raton, 1994
[2] An introduction to moving frames (I.M. Mladenov; A.C. Hirschfeld, eds.), Geometry, Integrability and Quantization, vol. 5, Softex, Sofia, Bulgaria, 2004, pp. 67-80
[3] Invariantization of the Crank–Nicolson method for burgers equation, Physica D: Nonlinear Phenomena, Volume 237 (2008) no. 2, pp. 243-254
[4] Moving frames, J. Symb. Comp., Volume 3 (2003), pp. 501-512
[5] Applications of Lie Groups to Differential Equations, Springer-Verlag, 1993
- Lie groups and continuum mechanics: where do we stand today?, Comptes Rendus. Mécanique, Volume 351 (2024) no. S3, p. 135 | DOI:10.5802/crmeca.242
- On the reduction of nonlinear mechanical systems via moving frames: a bead on a rotating wire hoop and a spinning top, Acta Mechanica, Volume 231 (2020) no. 12, p. 4867 | DOI:10.1007/s00707-020-02798-1
- Moving frames for Lie symmetries reduction of nonholonomic systems, Acta Mechanica, Volume 230 (2019) no. 8, p. 2963 | DOI:10.1007/s00707-019-02445-4
- A review of some geometric integrators, Advanced Modeling and Simulation in Engineering Sciences, Volume 5 (2018) no. 1 | DOI:10.1186/s40323-018-0110-y
- Theoretical treatment of fluid flow for accelerating bodies, Theoretical and Computational Fluid Dynamics, Volume 30 (2016) no. 5, p. 449 | DOI:10.1007/s00162-016-0382-0
- Convecting reference frames and invariant numerical models, Journal of Computational Physics, Volume 272 (2014), p. 656 | DOI:10.1016/j.jcp.2014.04.042
- Discrete Moving Frames and Discrete Integrable Systems, Foundations of Computational Mathematics, Volume 13 (2013) no. 4, p. 545 | DOI:10.1007/s10208-013-9153-0
- , 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (2012), p. 1716 | DOI:10.1109/fskd.2012.6234330
- Invariant Discretization Schemes for the Shallow-Water Equations, SIAM Journal on Scientific Computing, Volume 34 (2012) no. 6, p. B810 | DOI:10.1137/120861187
- On the Modern Notion of a Moving Frame, Guide to Geometric Algebra in Practice (2011), p. 411 | DOI:10.1007/978-0-85729-811-9_20
- Comparison of some Lie-symmetry-based integrators, Journal of Computational Physics, Volume 230 (2011) no. 5, p. 2174 | DOI:10.1016/j.jcp.2010.12.015
- On the accuracy of invariant numerical schemes, Communications on Pure and Applied Analysis, Volume 10 (2010) no. 2, p. 761 | DOI:10.3934/cpaa.2011.10.761
- Lie Symmetry Preservation by Finite Difference Schemes for the Burgers Equation, Symmetry, Volume 2 (2010) no. 2, p. 868 | DOI:10.3390/sym2020868
Cité par 13 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier