We propose a new approach for moving frame construction that allows to make finite difference scheme invariant. This approach takes into account the order of accuracy and guarantees numerical properties of invariant schemes that overcome those of classical schemes. Benefits obtained with this process are illustrated with the Burgers equation.
On propose une procédure nouvelle de construction des repères mobiles permettant de rendre invariant les schémas de discrétisation en différences finies. Elle prend en compte l'ordre de consistance et garantit aux schémas invariants de meilleures performances que celles des schémas classiques. On illustre les performances de cette approche sur l'exemple de l'équation de Burgers.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Schéma invariant, Symétrie de Lie, Repères mobiles, Schéma aux différences finies, Intégrateur géométrique
Marx Chhay 1; Aziz Hamdouni 1
@article{CRMECA_2010__338_2_97_0, author = {Marx Chhay and Aziz Hamdouni}, title = {A new construction for invariant numerical schemes using moving frames}, journal = {Comptes Rendus. M\'ecanique}, pages = {97--101}, publisher = {Elsevier}, volume = {338}, number = {2}, year = {2010}, doi = {10.1016/j.crme.2010.01.001}, language = {en}, }
Marx Chhay; Aziz Hamdouni. A new construction for invariant numerical schemes using moving frames. Comptes Rendus. Mécanique, Volume 338 (2010) no. 2, pp. 97-101. doi : 10.1016/j.crme.2010.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.01.001/
[1] CRC Handbook of Lie Group Analysis of Differential Equations, vols. 1–3, CRC Press, Boca Raton, 1994
[2] An introduction to moving frames (I.M. Mladenov; A.C. Hirschfeld, eds.), Geometry, Integrability and Quantization, vol. 5, Softex, Sofia, Bulgaria, 2004, pp. 67-80
[3] Invariantization of the Crank–Nicolson method for burgers equation, Physica D: Nonlinear Phenomena, Volume 237 (2008) no. 2, pp. 243-254
[4] Moving frames, J. Symb. Comp., Volume 3 (2003), pp. 501-512
[5] Applications of Lie Groups to Differential Equations, Springer-Verlag, 1993
Cited by Sources:
Comments - Policy