Comptes Rendus
Boundary conditions for an axisymmetric circular cylinder
Comptes Rendus. Mécanique, Volume 338 (2010) no. 5, pp. 255-259.

Through generalizing the method of a decay analysis technique determining the interior solution developed by Gregory and Wan, two necessary conditions on the edge-data of an axisymmetric circular cylinder for the existence of a rapidly decaying solution are established. By accurate solutions for auxiliary regular state, and using the reciprocal theorem and Boussinesq solution, these necessary conditions for the edge-data to induce only a decaying elastostatic state will be translated into appropriate boundary conditions for the circular cylinder with axisymmetric deformations. The results of the present Note extend the known results to circular cylinder's deformation problems, which enable us to establish two correct boundary conditions with stress and mixed edge-data. For the stress data, our boundary conditions coincide with those obtained in conventional forms of elastic theories. More importantly, the appropriate boundary condition with mixed edge-data is obtained for the first time.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2010.04.006
Mots-clés : Solids and structures, Axisymmetric deformation, Circular cylinder, Refined theory, Bessel's function

Bao-sheng Zhao 1; Yang Gao 2; Ying-Tao Zhao 3; Xin-xiang Zhou 1

1 School of Mechanical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
2 College of Science, China Agricultural University, Beijing, 100083, China
3 School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
@article{CRMECA_2010__338_5_255_0,
     author = {Bao-sheng Zhao and Yang Gao and Ying-Tao Zhao and Xin-xiang Zhou},
     title = {Boundary conditions for an axisymmetric circular cylinder},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {255--259},
     publisher = {Elsevier},
     volume = {338},
     number = {5},
     year = {2010},
     doi = {10.1016/j.crme.2010.04.006},
     language = {en},
}
TY  - JOUR
AU  - Bao-sheng Zhao
AU  - Yang Gao
AU  - Ying-Tao Zhao
AU  - Xin-xiang Zhou
TI  - Boundary conditions for an axisymmetric circular cylinder
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 255
EP  - 259
VL  - 338
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2010.04.006
LA  - en
ID  - CRMECA_2010__338_5_255_0
ER  - 
%0 Journal Article
%A Bao-sheng Zhao
%A Yang Gao
%A Ying-Tao Zhao
%A Xin-xiang Zhou
%T Boundary conditions for an axisymmetric circular cylinder
%J Comptes Rendus. Mécanique
%D 2010
%P 255-259
%V 338
%N 5
%I Elsevier
%R 10.1016/j.crme.2010.04.006
%G en
%F CRMECA_2010__338_5_255_0
Bao-sheng Zhao; Yang Gao; Ying-Tao Zhao; Xin-xiang Zhou. Boundary conditions for an axisymmetric circular cylinder. Comptes Rendus. Mécanique, Volume 338 (2010) no. 5, pp. 255-259. doi : 10.1016/j.crme.2010.04.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.04.006/

[1] M. Robert; L.M. Keer An elastic circular cylinder with displacement prescribed at the ends – axially symmetric case, and asymmetric case, Quart. J. Mech. Appl. Math., Volume 40 (1987), pp. 339-381

[2] N.G. Stephen; M.Z. Wang Decay rates for the hollow circular cylinder, J. Appl. Mech., Volume 59 (1992), pp. 747-753

[3] M. Birsan On Saint-Venant's principle in the theory of Cosserat elastic shells, Internat. J. Engrg. Sci., Volume 45 (2007), pp. 187-198

[4] M. Birsan On the theory of loaded general cylindrical Cosserat elastic shells, Internat. J. Solids Structures, Volume 44 (2007), pp. 7399-7419

[5] R.D. Gregory; F.Y.M. Wan Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory, J. Elasticity, Volume 14 (1984), pp. 27-64

[6] R.D. Gregory; F.Y.M. Wan On plate theories and Saint-Venant's principle, Internat. J. Solids Structures, Volume 21 (1985), pp. 1005-1024

[7] Y.H. Lin; F.Y.M. Wan First integrals and the interior solution for orthotropic plates in plane strain or axisymmetric deformations, Stud. Appl. Math., Volume 79 (1988), pp. 93-125

[8] F.Y.M. Wan Stress boundary conditions for plate bending, Internat. J. Solids Structures, Volume 40 (2003), pp. 4107-4123

[9] Y. Gao; S.P. Xu; B.S. Zhao Boundary conditions for elastic beam bending, C. R. Mecanique, Volume 335 (2007), pp. 1-6

[10] Y. Gao; S.P. Xu; B.S. Zhao Mixed boundary conditions for piezoelectric plates, Sci. China Ser. G, Volume 52 (2009), pp. 755-761

[11] Y. Gao; S.P. Xu; B.S. Zhao Boundary conditions for the bending of a piezoelectric beam, Sci. China Ser. G, Volume 51 (2008), pp. 847-856

[12] Y. Gao; S.P. Xu; B.S. Zhao Boundary conditions for plate bending in one-dimensional hexagonal quasicrystals, J. Elasticity, Volume 86 (2007), pp. 221-233

[13] Y. Gao; S.P. Xu; B.S. Zhao Stress and mixed boundary conditions for two-dimensional dodecagonal quasi-crystal plates, P. J. Phys., Volume 68 (2007), pp. 803-817

[14] J. Boussinesq Application des potentiels a l'équilibre et des mouvements des solides élastiques, Gauthier-Villars, Paris, 1885

Cited by Sources:

Comments - Policy